IL TEST DA SFORZO CARDIO-POLMONARE Basi e applicazioni cliniche

www.fisiokinesiterapia.biz

METODICA PER DETERMINARE I LIMITI E I MECCANISMI DELLA TOLLERANZA ALLO SFORZO

PERMETTE DI STUDIARE LA FUNZIONALITA' DI VARI APPARATI.

PERMETTE DI VALUTARE LE RISERVE DEI NOSTRI APPARATI

Indicazioni al CPT

Valutazione di natura e grado della dispnea e della limitazione della Tolleranza allo sforzo

- Differenza fra dispnea di origine cardiaca e polmonare
- Valutazione della dispnea di origine sconosciuta con fx respiratoria non diagnostica
- Valutazione della natura e del grado di intolleranza allo sforzo

-Valutazione funzionale durante lo sforzo nelle patologie polmonari croniche

- BPCO
- Malattie polmonari interstiziali
- Fibrosi cistica
- Malattia vascolare polmonare

-Valutazione pre-operatoria

- Chirurgia toraco-polmonare
- Chirurgia addominale maggiore

-Programmi di riabilitazione

- Valutazione del paziente
- Prescrizione dell'esercizio
- Valutazione dei risultati

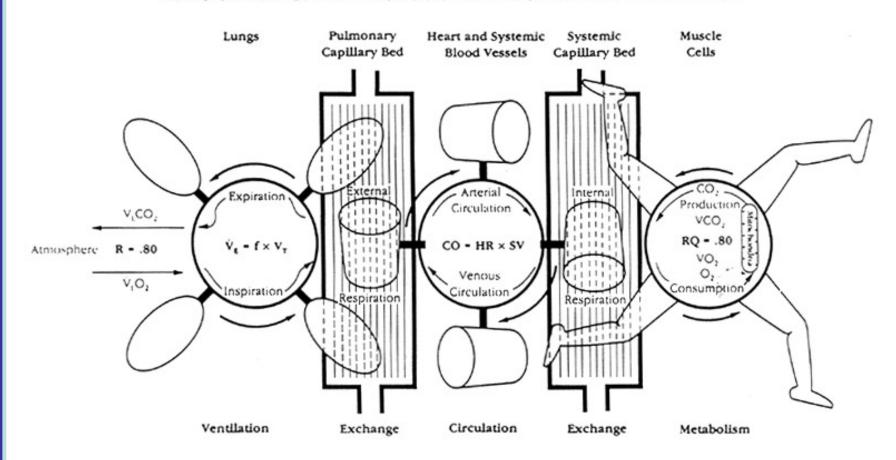
E' UNA METODICA SICURA NON PRIVA DI RISCHI

Substrati energetici: carboidrati e lipidi, proteine solo in condizioni di denutrizione

L'energia derivante dai substrati è accumulata nei legami ad alto contenuto energetico (legami fosforici) che compongono la molecola di adenosina trifosfato (ATP) mediante una serie di processi biochimici che prevedono l'utilizzazione finale di ossigeno

AEROBIOSI

L'ATP può essere sintetizzata in assenza di ossigeno attraverso l'utilizzo dei legami fosforici della Fosfocreatina


ANAEROBIOSI

Trasporto: ventilazione polmonare circolazione cardiovascolare

Scambio: diffusione a livello polmonare o respirazione esterna (scambio di O2 e CO2 tra aria alveolare e sangue) diffusione a livello cellulare o respirazione interna (scambio O2 e CO2 tra sangue e tessuti cellulari)

Metabolismo

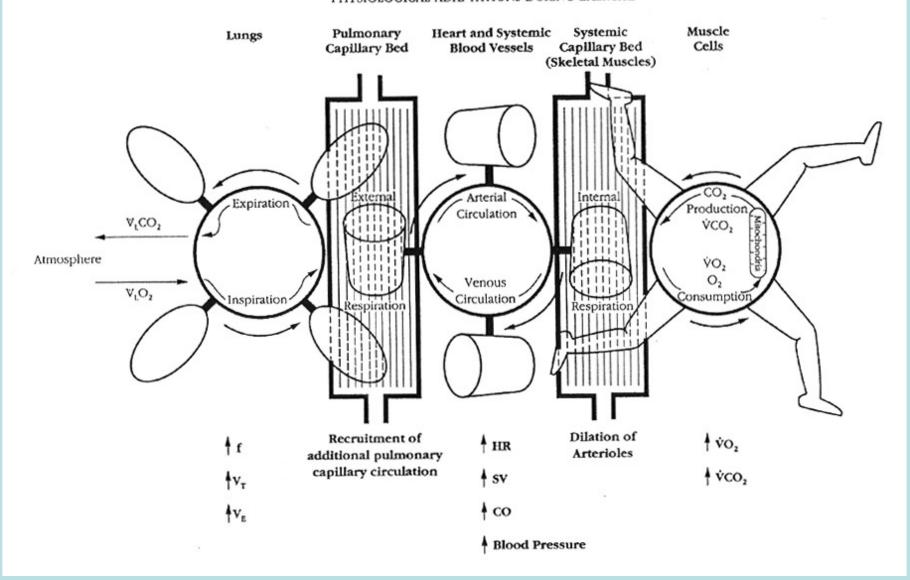
RELATIONSHIPS BETWEEN THE PHYSIOLOGICAL MECHANISMS THAT SUPPORT MUSCULAR WORK

R - Respiratory Exchange Ratio

RQ - Respiratory Quotient

V, - Minute Ventilation of Breathing

f - Frequency of Breathing (Respiratory Rate)


V, - Tidal Volume of Breathing

CO - Cardiac Output

HR - Heart Rate

SV - Stroke Volume

PHYSIOLOGICAL ADAPTATIONS DURING EXERCISE

ADATTAMENTI FISIOLOGICI DURANTE L'ESERCIZIO FISICO

- **METABOLISMO**
- **FUNZIONE POLMONARE**
- FUNZIONE CARDIACA

PARAMETRI METABOLICI

CONSUMO DI OSSIGENO

PRODUZIONE DI ANIDRIDE CARBONICA

LATTATI

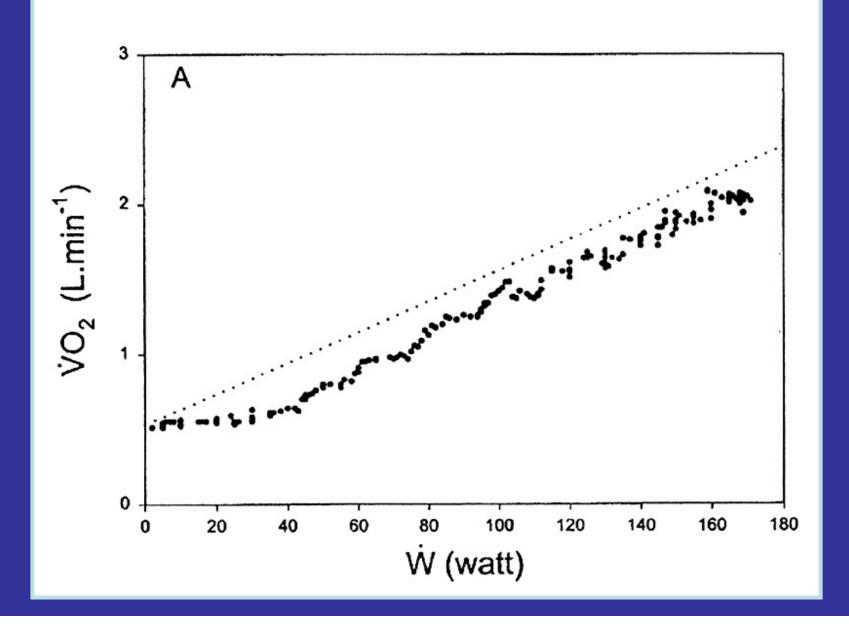
SOGLIA ANAEROBICA

PH

VO2: volume di ossigeno assorbito dai polmoni in 1 minuto; QO2: consumo di O2 a livello metabolico

Sedentario

RIPOSO 250 ml/min


MASSIMO 1700 ml/min (3.5-4.0 ml/min/kg) (24-27 ml/min/kg)

Atleta

250 ml/min (3.5-4.0 ml/min/kg

5800 ml/min (80 ml/min/kg)

Relazione tra VO2 e watt durante CPET

VCO2 =quantità di anidride carbonica esalata nella unità di tempo; in condizioni stabili è = a quella prodotta dal processo metabolico

(QVCO2)

Sedentario

RIPOSO 200 ml/min (2.8 ml/min/kg) MASSIMO 2000 ml/min (24-27 ml/min/kg)

Atleta

200 ml/min (2.8 ml/min/kg)

4000 ml/min (56ml/min/kg)

SOGLIA ANAEROBICA

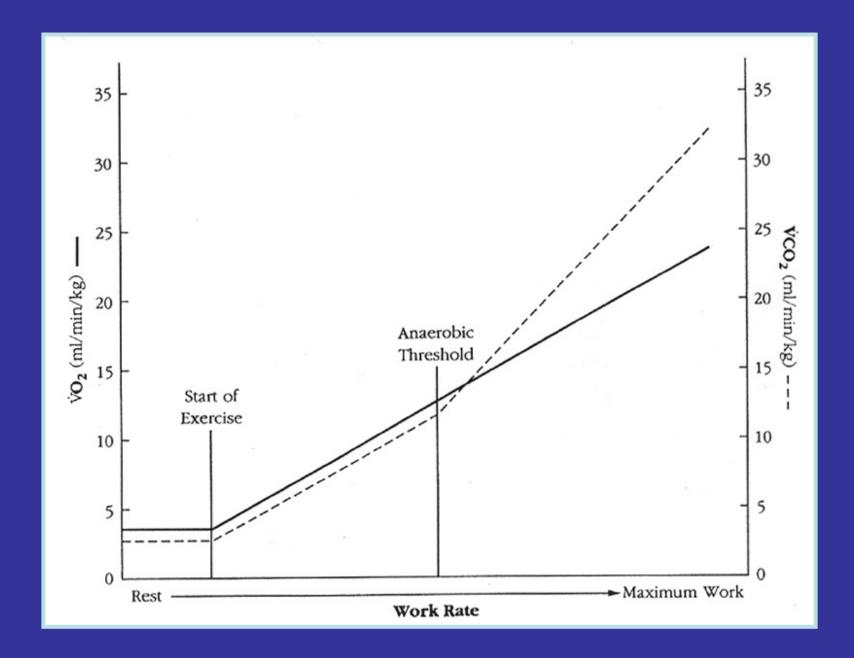
Livello massimo di lavoro(o di consumo di O2) che può essere ottenuto senza la produzione di acido lattico per via metabolica

> Valore Sedentario= 50% del massimo consumo di O2 Atleta (90% del massimo consumo di O2

Quoziente respiratorio; valore normale

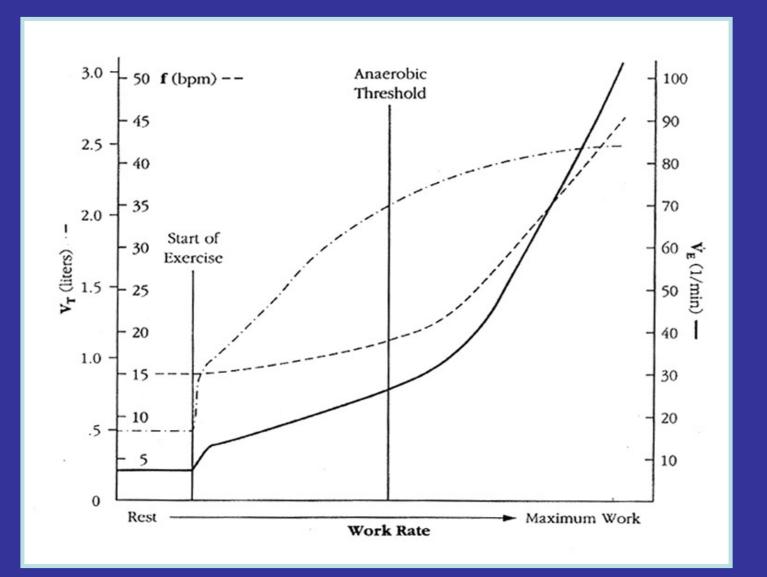
VCO2

= 0.8


VO₂

Si parla di soglia anaerobica quando questo rapporto

e' uguale a 1 (VCO2/VO2=1)


L'incremento significativo della produzione:

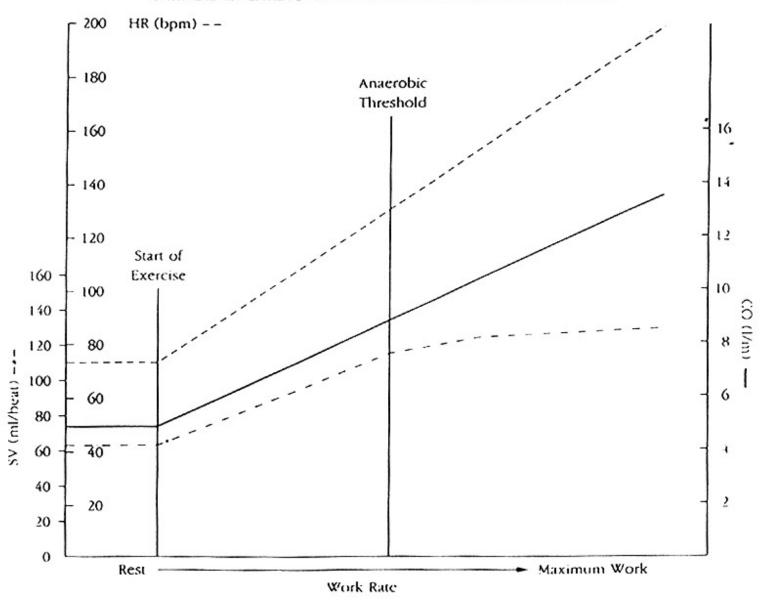
Gli H+ dell'acido lattico vengono tamponati dagli ioni HCO3con successiva formazione di H2CO3 che si dissocia in H2O2 e CO2

PARAMETRI POLMONARI

	Riposo	Massimo
Ventilazione	5-10 L/min	100-200 L/min
Volume corrente	0.5 L	2.3-3.0 L
Frequenza respiratoria	12-16 rpm	40-50 rpm
Spazio morto/Vol corr	0.25-0.35	0.04-0.2
Tempo transito capillare pol	lm 0.75 sec	0.38 sec

PARAMETRI CARDIOVASCOLARI

RIPOSO MASSIMO


Portata cardiaca 4-6L/min 20-40 L/min

Gittata sistolica 50-80 ML CIRCA IL DOPPIO

FREQUENZA CARDIACA 30-100 bpm 2,5/4 volte il basale

POLSO DI O2 (VO2/HR) 2,5-4 ml 10-15 ml

FREQUENZA CARDIACA

-Soppressione del tono del sistema parasimpatico

-Attivazione del sistema simpatico

RISERVA CARDIACA

Differenza tra frequenza cardiaca massima predetta E massima frequenza raggiunta al massimo dello sforzo

Valore
15 battiti/min

Equazione per il calcolo del valore medio di fcmax

$$Fc$$
max (± 10 bpm) = 220-età

F

C

Es : giovani di 20 anni, fcmax = 200 bpm anziani di 80 anni, fcmax = 140 bpm

STADIAZIONE DELLA CAPACITA' DI ESERCIZIO FISICO IN BASE AL VO2max

VO2max (% teorico)

Grado

> 80%

Normale

71-80 %

Livemente ridotta

51-70%

Moderatamente ridotta

< 50%

Severamente ridotta

INDICAZIONI PER IL TEST DA SFORZO CARDIOPOLMONARE

Determinare la tolleranza all'esercizio e i fattori limitanti

Determinare l'impairment nelle malattie croniche polmonari

Stabilire la disabilità

Valutazione per i programmi di riabilitazione

Valutazione pre-operatoria

Trapianto del polmone e cuore-polmone

CONTROINDICAZIONI AL TEST DA SFORZO

ASSOLUTE

- IMA
- ANGINA INSTABILE NON IN TERAPIA
- ARITMIA CARDIACA NON CONTROLLATA CHE DETERMINA SINTOMI O COMPROMISSIONE EMODINAMICA
- INSUFFICIENZA CARDIACA SINISTRA
- EP ACUTA O INFARTO POLMONARE
- MIOCARDITE O PERICARDITE ACUTA DISSEZIONE AORTICA
- RILUTTANZA A DARE IL CONSENSO INFORMATO

RELATIVE

- STENOSI DELLA CORONARIA PRINCIPALE DI SINISTRA
- ALTERAZIONI ELETTROLITICHE
- IPERTENSIONE ARTERIOSA DI GRADO ELEVATO (200/110)
- TACHIARITMIA O BRADIARITMIA
- CARDIOMIOPATIA IPERTROFICA O ALTRE PATOLOGIE CHE DETERMINANO OSTRUZIONE AL FLUSSO
- CONDIZIONI FISICHE CHE IMPEDISCONO DI ESEGUIRE
- BLOCCO ATRIO-VENTRICOLARE ELEVATO L'ESERCIZO

CRITERI DI INTERRUZIONE DEL TEST

- ANGINA DI GRADO MODERATOO SEVERO
- PEGGIORAMENTO DELLE CONDIZIONI NEUROLOGICHE (ATASSIA, CONFUSIONE)
- CIANOSI O PALLORE
- DESIDERIO DEL PZ DI INTERROMPERE
- DIFFICOLTA' DI MONITORAGGIO DI ECG O PRESSIONE ARTERIOSA
- TV DI GRADO ELEVATO

Le fasi del CPET con protocollo incrementale

Preparazione del soggetto

Riposo (3 min)

Riscaldamento (3 min)

Esercizio incrementale (10 min)

Recupero (3 min)

Consenso informato

Preparazione del paziente

- essere riposato
- astenersi dal cibo nelle 3-4 hr precedenti
- non sospendere la terapia in atto
- abiti confortevoli
- PFR, DLCO,EGG di base

Valutazione clinica del paziente

TASSO DI MORTALITA 0.01%

50% DEI CASI MUORE ENTRO LA PRIMA ORA

COMPLICANZE GRAVI CHE NON RICHIEDONO LA OSPEDALIZZAZIONE

- DOLORE TORACICO
- SOTTOSLIVELLAMENTO DEL TRATTO ST
- ARITMIE
- CRISI IPERTENSIVE
- EPISODI SINCOPALI

Conclusioni

II CPET:

- •Valuta la funzione cardio-respiratoria in corso di esercizio
- •Misura il grado di riserva funzionale cardiorespiratoria
- •Misura la capacità di esercizio in termini di VO2max
- •Individua le cause di una riduzione di VO2max

www.fisiokinesiterapia.biz