www.fisiokinesiterapia.biz

Human Anatomy

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Nervous Tissue

1

The Nervous System

- The body's primary communication and control system.
- Can be divided according to:
 - Structural categories
 - Functional categories.

Nervous System: Structural Organization

Structural subdivisions of the nervous system:

- Central nervous system (CNS)
 - brain and spinal cord
- Peripheral nervous system (PNS)
 - cranial nerves (nerves that extend from the brain)
 - spinal nerves (nerves that extend from the spinal cord)
 - ganglia (clusters of neuron cell bodies (somas) located outside the CNS)

Nervous System: Functional Organization

Functional divisions of the nervous system:

- Sensory afferent division:
 - receives sensory information (input) from receptors
 - transmits this information to the CNS.
- Motor efferent division:
 - transmits motor impulses (output) from the CNS
 - to muscles or glands (effector organs).

Sensory Division: two components

- Somatic sensory components:
 - General somatic senses:
 - touch
 - pain
 - pressure
 - vibration,
 - temperature
 - proprioception.
 - Special senses:
 - Taste
 - Vision
 - Hearing
 - Balance
 - smell

Sensory Division: two components

- Visceral sensory components
 - transmit nerve impulses from blood vessels and viscera to the CNS
 - visceral senses primarily include:
 - temperature
 - stretch (of the organ wall).

Motor Division: two components

- The somatic motor component (somatic nervous system; SNS):
 - conducts nerve impulses from the CNS to skeletal muscles
 - also known as the voluntary nervous system
- The autonomic motor component (autonomic nervous system; ANS): internal organs, regulates smooth muscle, cardiac muscle, and glands.
 - Innervates
 - Internal organs
 - Regulates smooth muscle
 - Regulates cardiac muscle
 - Regulates glands
 - also known as the visceral motor system or involuntary nervous system

Nerve Cells

- Nervous Tissue
 - Two distinct cell types
 - Neurons
 - excitable cells
 - initiate and transmit nerve impulses
 - Glial cells
 - nonexcitable cells
 - support and protect the neurons

Characteristics of Neurons

- Neurons have a high metabolic rate.
- Neurons have extreme longevity.
- Neurons typically are non-mitotic.

Neuron Structure

- Neurons come in all shapes and sizes
- All neurons share certain basic structural features.
- typical neuron:
 - Cell body (soma, perikaryon)
 - Dendrites
 - Axon
 - Collaterals: branches
 - axon terminals or telodendria
 - Synaptic knobs

Neuron Structure – Cell Body

The cell body (perikaryon, soma)

- the neuron's control center
 - responsible for:
 - receiving
 - integrating
 - sending nerve impulses.
- Consists of:
 - Plasma membrane
 - Cytoplasm
 - Nucleus with prominent nucleolus
 - Chromatophobic substance (Nissil bodies): RER
 - Free ribosomes

Neuron Structure – Dendrites

- Shorter, smaller processes
- Branch off the cell body.
- Some neurons have only one dendrite, while others have many.
- Dendrites conduct nerve impulses toward the cell body
 - they receive input
 - transfer input to the cell body for processing.
- The more dendrites a neuron has, the more nerve impulses that neuron can receive from other cells.

Neuron Structure – Axon

- Iarger, typically longer nerve cell process
- Extend from the cell body
 - Axon hillock
- also called a nerve fiber
- Most neurons have only one axon.
 - Anaxonic

Neuron Structure – Axon

- Structures
 - Collaterals
 - Telodendria (axon terminals)
 - Synaptic knobs (terminal boutons)
- The axon transmits a nerve impulse away from the cell body toward another cell.

Neuron Structure

- Cytoskeleton
 - Neurotubules
 - microtubules
 - Neurofilaments
 - Intermediate fibers
 - Neurofibrils
 - Bundles of neurofibrils
 - In both dendrites and axons
 - Provide strength

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Classifications of Neurons

- Neurons vary widely in morphology and location.
 - classified based on
 - structure
 - function.
- Structural classification: number of processes extending from the cell body.
 - unipolar neuron has a single process
 - bipolar neurons have two processes
 - multipolar neurons have three or more processes

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functional Classification

- Sensory afferent neurons: receptor to CNS
- Motor efferent neurons: CNS to effector
- Interneurons (association neurons): facilitate communication between sensory and motor neurons.

Interneurons

- Interneurons, or association neurons
 - lie entirely within the CNS
 - multipolar.
- They receive nerve impulses from many other neurons
- They carry out the integrative function of the nervous system.
- Interneurons facilitate communication between sensory and motor neurons.

www.fisiokinesiterapia.biz

24

Glial Cells

- Also called neuroglia
- Occur within both the CNS and the PNS.
- are smaller than neurons
- are capable of mitosis.
- do not transmit nerve impulses.
- Glial cells
 - physically protect neurons
 - help nourish neurons
 - provide a supporting framework for all the nervous tissue.
- Glial cells far outnumber neurons.
- Glial cells account for about half the volume of the nervous system.

CNS Glial Cells

Glial Cells of the CNS: astrocytes

- Exhibit a starlike shape due to projections from their surface.
- The most abundant glial cells in the CNS
 - constitute over 90% of the tissue in some areas of the brain.
- Help form the blood-brain barrier (BBB):
 - strictly controls substances entering the nervous tissue in the brain from the bloodstream.
- Regulate tissue fluid composition.
- Provide structural support
- Replace damaged neurons
- Assist neuronal development

Glial Cells of the CNS: ependymal cells

- Cuboid ET
 - Cilia on apical surface
 - Circulates CSF.
- Line internal cavities
- Processes make contact with other glial cells
- Help form the choroid plexus
 - CSF: cerebral spinal fluid

30

Glial Cells of the CNS: microglia

- Smallest % of CNS glial cells.
- Phagocytic
 - Move through the tissue in response to infection
 - Remove debris.
 - Like macrophages

Glial Cells of the CNS: oligodendrocytes

Large, with big body and processes.Processes form myelin sheaths

Speeds up transmission

PNS Glial Cells

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Glial Cells of the PNS

- Satellite cells:
 - Flattened cells
 - Cover somas in ganglia
 - Separate soma from surrounding tissue fluid
 - Regulate exchange.
- Neurolemmocytes (Schwann cells)
 - Myelination in the PNS

Myelination

Process by which part of an axon is wrapped with a myelin sheath

- Forms a protective fatty coating
- Has a glossy-white appearance.
- The myelin sheath:
 - supports the axon
 - protects the axon
 - insulates an axon

Myelination

- No change in voltage can occur across the membrane in the insulated portion of an axon.
- Voltage change occurs at the nodes
- Neurolemmocytes: form myelin sheaths in PNS
- Oligodendrocytes: form myelin sheaths in the CNS

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CNS

Axon

Neurofibril node

Mylenated vs. Unmylenated Axons

- myelinated axon
 - nerve impulse "jumps" from neurofibril node to neurofibril node
 - known as saltatory conduction
 - requires less energy (ATP) than does an unmyelinated axon
- unmyelinated axon
 - nerve impulse must travel the entire length of the axon
 - known as continuous conduction
 - nerve impulse takes longer to reach the end of the axon
 - Using continuous conduction, unmyelinated axons conduct nerve impulses from pain stimuli
- A myelinated axon produces a faster nerve impulse.

www.fisiokinesiterapia.biz

41

Regeneration of PNS Axons

- PNS axons are vulnerable to cuts and trauma.
- A damaged axon can regenerate
 - if some neurilemma remains.
- PNS axon regeneration depends upon three factors.
 - amount of damage
 - neurolemmocyte secretion of nerve growth factors
 - stimulates outgrowth of severed axons
 - distance between the site of the damaged axon and the effector organ

Regeneration of PNS Axons

- Wallerian degeneration.
 - Axon damaged
 - Proximal end seals, and swells.
 - Distal end degenerates, macrophages clean up
 - Distal neurolemmocytes survive
 - Neurolemmocytes form regeneration tube (with endoneurinum)
 - Axon regenerates, remyelinates
 - Axon reestablishes contact with effector

4 Axon regenerates and remyelination occurs.

5 Reinnervation of the effector (skeletal muscle fibers) by the axon.

Structure of a Nerve

- A nerve is a cable-like bundle of parallel axons.
- three connective tissue wrappings.
 - Endoneurium
 - delicate layer of loose connective tissue
 - Perineurium
 - a cellular and fibrous connective tissue layer
 - wraps groups of axons into fascicles
 - Epineurium a superficial connective tissue covering
 - This thick layer of dense irregular fibrous connective tissue
 - encloses entire nerve
 - provides support and protection

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(c)

48

Nerves

- Nerves are organs of the PNS.
- Sensory (afferent) nerves convey sensory information to the CNS.
- Motor (efferent) nerves convey motor impulses from the CNS to the muscles and glands.
- Mixed nerves: both sensory and motor
- Axons terminate as they contact other neurons, muscle cells, or gland cells.
- An axon transmits a nerve impulse at a specialized junction with another neuron called synapse.

Synapses

- Presynaptic neurons
 - transmit nerve impulses toward a synapse.
- Postsynaptic neurons
 - conduct nerve impulses away from the synapse.
- Axons may establish synaptic contacts with any portion of the surface of another neuron
 - except those regions that are myelinated.

(b) Simplified representation of a synapse

Types of synapses: based on contacts

- axodendritic
- axosomatic
- axoaxonic

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Main types of synapses

- Electrical synapses
 - Gap junctions
- Chemical synapses
 - Use neurotransmitters

Electrical Synapses

- Electrical synapses are not very common in mammals.
- In humans, these synapses occur primarily between smooth muscle cells where quick, uniform innervation is essential.
- Electrical synapses are also located in cardiac muscle.

Chemical Synapses

- Most numerous type of synapse
- Facilitates interactions
 - between neurons
 - between neurons and effectors.
- These are cell junctions
- Presynaptic membrane:
 - releases a signaling molecule called a neurotransmitter, such as acetylcholine (ACh).
 - Other types of neurons use other neurotransmitters.
- Postsynaptic membrane:
 - Contains receptors for neurotransmitters

Neurotransmitters

- Released from the plasma membrane of the presynaptic cell.
- Then binds to receptor proteins on the plasma membrane of the postsynaptic cell.
- A unidirectional flow of information and communication
- Two factors influence the rate of conduction of the impulse:
 - axon's diameter
 - presence (or absence) of a myelin sheath.

Neuronal Pools (or Neuronal Circuits or Pathways)

- Billions of interneurons within the CNS are grouped in complex patterns called neuronal pools (or neuronal circuits or pathways).
- Neuronal pools are defined based upon function, not anatomy, into four types of circuits:
 - converging
 - diverging
 - reverberating
 - parallel-after-discharge
- A pool may be localized, or its neurons may be distributed in several different regions of the CNS.

61