New insights into the mechanisms of tendon injury
What is normal tendon?

- A extracellular matrix tissue
 - Type 1 collagen
- Small amounts of CRITICAL proteins
 - Ground substance
 - Proteoglycans, glycoproteins
- Structures that make the tendon a living structure
 - Cells, nerves, vessels
Tendon pathology

- Metaplastic change to fibrocartilage
 - Cell proliferation
 - Rounder
 - Ground substance increase
 - Larger (compressive) proteoglycans
 - Collagen degradation
 - Loss of Type 1
 - Neurovascular proliferation
What happens first in tendinopathy?

• Does a tendon go from normal to pathological in one step?
 • What happens first?
 • Collagen tear?
 • Vascular ingrowth?
 • Cell reaction?
 • Ground substance increase

![Combination of histopathological changes](chart)

- Tenocyte only: 1 tendon
- Tenocyte & ground substance: 2 tendons
- Tenocyte, ground substance & collagen alteration: 9 tendons
- Tenocyte, ground substance, collagen alteration & vascularity: 0 tendons
How does pathology develop?
Normal tendon

Stress shielded

Optimised Load

Excessive load + individual factors

Unloaded

Optimised load

Appropriate modified load

Adaptation

Strengthen

Normal or excessive load +/- individual factors

Optimised load

Reactive tendinopathy

Tendon dysrepair

Degenerative tendinopathy
Model of tendinopathy

<table>
<thead>
<tr>
<th></th>
<th>Reactive</th>
<th>Tendon dysrepair</th>
<th>Degenerative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tendon response</td>
<td>Adapting to load</td>
<td>Attempting to heal</td>
<td>Gives up on healing</td>
</tr>
<tr>
<td>Pathology</td>
<td>Cells active</td>
<td>Cells active</td>
<td>Cells die, no protein production</td>
</tr>
<tr>
<td></td>
<td>Increased ground substance production</td>
<td>Continues GS and collagen production but fails to gain structure</td>
<td></td>
</tr>
<tr>
<td>Age/load</td>
<td>Younger or short term load</td>
<td>Older and/or ongoing strain</td>
<td>Oldest and/or further strain</td>
</tr>
<tr>
<td>Capacity to repair</td>
<td>Full</td>
<td>Limited</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>May progress to rupture</td>
</tr>
<tr>
<td>Prevalence</td>
<td>Common, not seen</td>
<td>Less common presents clinically</td>
<td>Uncommon, presents clinically</td>
</tr>
<tr>
<td>Pain</td>
<td>If extensive, very painful</td>
<td>Sometimes</td>
<td>Often grumbly</td>
</tr>
</tbody>
</table>
Clinical perspective
Imaging
Evidence for this model
Patellar tendon transition over one volleyball season

<table>
<thead>
<tr>
<th>Start of season</th>
<th>Normal</th>
<th>Reactive (cell-PGs)</th>
<th>Degenerative (matrix-collagen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>226.78</td>
<td>58.2</td>
<td>5.02</td>
</tr>
<tr>
<td>Reactive</td>
<td>35.26</td>
<td>72.54</td>
<td>26.2</td>
</tr>
<tr>
<td>Degenerative</td>
<td>4.02</td>
<td>25.16</td>
<td>129.82</td>
</tr>
</tbody>
</table>

Malliaras et al in press BJSM
Typical presentations

- Reactive
 - Younger (15-25yrs)
 - Rapid onset generally related to load
 - Fusiform swelling of tendon 3-4cm
 - Aggravated by exercise

- Tendon dysrepair
 - Young adult (20-35yrs)
 - Past history with load related exacerbations
 - Fusiform swelling of tendon 3-4cm
 - Less irritable

- Degenerative
 - Older (30-60yrs)
 - Long history of symptoms
 - Variable swelling and lumps/bumps
 - Exhibit unloading strategies or atrophy
How should you treat the stages?

- **Reactive** tendons need to be calmed down and unloaded
 - How?
 - NOT eccentrics. decrease load
 - This is maybe how passive therapies work
 - They treat the right tendon with no treatment

- **Tendon dysrepair** needs to be stimulated to make good structure
 - How? Load probably eccentrics

- **Degenerative** tendons need to be stimulated to manufacture protein and structure matrix
 - Throw anything at it

 Could have parts of a tendon that are in different phases
Well, what about pain?

- Pain in tendon pathology is difficult to explain
- A majority are not painful
- Why are some tendons painful?
 - Multiple possibilities
 - Neurovascular change
 - Cytokines
 - Cell driven?
Well, what about pain?

- Tendon pain may have several sources
 - Generated by nerves associated with vessels
 - Association is not clear or strong
 - Maybe by the tendon cells themselves
 - ? a factor in reactive tendinopathy
 - Pain only seems to be present when most of the tendon is involved
 - Young tendons, pranged tendons, remaining bits of degenerative tendons
 - Calming the cells may decrease the pain

Ohberg, Danielson, Alfredson
Linking load, pathology and pain - patellar tendon

- Loading not good for pathology: 25%
- Pathology, no pain: 4%
- Pathology & pain: 21%
- Loading not detrimental for pain: 1%

Supports the model
Can pain precede pathology?

- Early stage disease?
 - Incorrect diagnosis, minor disease, peritendon pathology?
- 26 players that had imaging normal tendinopathy at start of volleyball season
 - 17 men, 9 women
 - 33 tendons
 - 7 bilateral

- Became normal (lost pain)
 - 6 (18%)
- Stayed same
 - 11 (33%)
- Developed ultrasound changes
 - All proliferative in appearance, one hypoechoic
- Without pain
 - 9 (27%)
- With pain
 - 7 (21%)

Malliaras et al 06
How does load affect tendon?

- **Positive**
 - Without load tendons lose function
 - Tendon degradation in matrix and cell
 - Person changes
 - Functional and musculotendinous deterioration in the individual

- **Negative**
 - Overload leads to tendinopathy
 - Pathology and pain
 - Not necessarily together
 - More load, more prevalent
 - Young and past elite athletes (Kujala et al 07)
 - Aspects of load may be critical
 - Distance runners OR 31.2 (frequency)
 - Sprinters OR 14.9 (load)? (Kujala 05)
What types of tendon load are there?

- Tensile load thought to be the primary overload
- Compression is implicated in many tendinopathies
- Load may vary in different parts of the tendon
Is load homogeneous throughout the tendon?

- Mid tendon
 - Achilles is the only tendon to fail in the midsstance
 - Not hypovascular
- Tensile load
- Insertion
 - Not commonly where tendon inserts, but just proximal to it
- Compressive load
- Peritendon
 - Posterior gliding membranes and anterior fat structures
 - Complex and multifunctional
 - Mechanoreceptive, nociceptive structures and macrophages Shaw et al 07
- Friction
What is high tensile load?

A Eccentric contraction
B Fast contraction
C High weights
D Stretch-shorten cycle
What is high tensile load?

- Any activity that requires the tendon to store and release energy
- Anything else is easy for a tendon
 - High weights, eccentric movement
How does tendon respond to load?

Slowly!!!!!

Collagen type-I formation in peritendon tissue
Effect of acute, prolonged exercise in healthy subjects

Cell response to load

- Cell produces proteins to adapt ECM
 - Both collagen production and breakdown in early stages then more production
 - More than 4 weeks
 - Kjaer and associates
 - Indications that tendon size is responsive to load
 - Bigger tendons in athletes
 - Kongsgaard et al 06
 - ? Possible after puberty Smith 02
Quick and dirty response to load

- Back to the spring analogy
 - If a spring is stretched too much or too often, then it must be strengthened
 - In a tendon, a thicker tendon is stronger
 - This can be a very quick response
 - Hyaluronon can be made in minutes and aggrecan in 2 days
 - After one bout of eccentric exercise in tendinopathy
 - Signal increased by 17%, volume by 31% after 30 minutes
 - Shalabi et al 2003
Clinical application

- High loads must be continued for extended periods for adaptation to occur
- Exercise prescription is critical
 - Frequency of high load
 - In normal and pathological tendons
 - HIGH TENDON LOAD
 - Every third day to start
 - Pathological tendons may never cope with twice daily exercise
Clinical perspective

- Loading the spring when it is stretched further is more damaging than loading it when it is shorter
- Tendons succumb to pathology when they repeatedly undergo stretch-shortening at length
 - Jumping athletes, not runners, get patellar tendinopathy
 - Hockey players and sprinters get hamstring tendinopathy
 - Not lawn bowls because length but no energy storage
 - Change of direction (soccer players) get adductor tendinopathy
 - Kicking in ARF
 - Court sports and runners get Achilles tendinopathy
Compression with tensile load

Force increased with load at length
- Long thin springs are vulnerable to overload in the middle
 - Sustained in the midtendon
 - Shorter tendons may be more vulnerable at the insertions

Load at length also induces compression
- Tendons insert into a depression after a bony elevation
 - Load at length will compress the tendon
Compressive load

- Enthesis adapts to the strains on the tissue
 - The bone, bursa and cartilage changes are dependent on
 - The inherent characteristics
 - Loading history

- Primarily compressive pathology proximal to the insertion
Decompressing the Achilles insertion

- Only 30% improved with standard Achilles program
- 27 participants (34 tendons)
 - Chronic Achilles insertional tendinopathy
 - Mean 26 months
- Eccentric program to flat
 - I.e. eccentrics with reduced compression
 - VAS 72 at baseline
- VAS decreased to 21
- 19 participants (23 tendons satisfied)
 - 70% of group improved
- 9 (11 tendons not satisfied)
 - VAS significantly improved (58) but not back to previous levels of activity
- Outcome not influenced by bone spurs, Haglund's or bursal pathology
 - Jonnson et al 08
Does compression explain some midtendon Achilles tendinopathy?

- Loading a spring causes thinning in the midtendon, therefore internal compression
- Midtendon is made up of fibres from soleus and gastroc
 - Internal interface between soleus and gastrocnemius Bojsen – Moller et al 2004
Compression in Achilles tendinopathy

- The posterior retinaculum that prevents bowstringing in plantar flexion may compress the tendon in this position
- Sedentary people may spend time in plantar flexion
- 44% of sedentary people failed to improve with eccentric (tensile) loading (Sayana et al 07)
What about supraspinatus?

- Why does it commonly have a tendinopathy?
 - No spring-like energy storage
 - Other larger tendons take this role
 - More stabiliser
 - Likely compressed
 - Anatomically from winding over the tuberosity
 - Pathologically from the decrease in acromio-humeral distance
 - That’s why scapular retraining works
 - Alters compressive loads
 - Anatomical compressive loads known in tib post
What about unloading?

- Rest is clearly catabolic for connective tissue
 - No stimulus for protein production or for structure
 - No maintenance of muscle tendon unit or musculoskeletal capacity
Critical time for tendons

- After period of decreased load (hence a rapid increase in load)
 - Injury of any sort
 - Off-season
 - Load tolerance of the muscle-tendon unit is decreased
 - Most symptoms in athletes start at this time

- Clinical perspective
 - Ramp back after low load periods especially in those with known pathology
Summary

- Load is inherent for a tendon
- Maintaining homeostasis
- Becoming pathological
 - Different parts of the tendon respond differently
 - Type of load is critical
 - Quantity of load critical
 - Not sure what is most important