New insights into the mechanisms of tendon injury
1. What other factors affect onset of tendinopathy?

2. What treatments are best for tendinopathy?
Figure 2 Complex interaction between internal and external risk factors leading to an inciting event and resulting in injury.
What factors predispose a person to tendon injury?

- In some tendons, extrinsic factors (load) make a person susceptible
 - Young active men
 - Patellar tendon in jumping athletes
 - Adductor tendon in kicking athletes

- In some tendons it appears that intrinsic factors have a strong influence
 - Older sedentary women
 - Gluteal tendinopathy (? Long term compressive loads)
 - Supraspinatus
 - Both sexes
Tendinopathy

- Achilles tendon is heterogeneous in prevalence and onset
- Intrinsic and extrinsic factors are evident
 - Presents across a range of ages and activity
 - 11% lifetime incidence (Kujala et al 07)
 - Young high load athletes
 - Middle aged moderate load people
 - Older low load post menopausal women (Maffulli et al)
 - Sedentary people
Tendinopathy is a person disease with a load topping

- Tendinopathy in systemic disease
 - Diabetes, arthridites
- Collagen diseases
 - Marfan’s, Ehlers–Danlos
- Drug induced tendinopathies
 - Statins, fluroquinolones
- What intrinsic factors have been shown to affect tendons?
 - Genes
 - Age
 - Sex
 - Body composition
 - Biomechanics
Genes

Blood group
- Yes (Kannus et al 91, Jarvinen 92)
- No (Maffulli)

Specific polymorphisms for type V collagen and tenascin-C gene are more common in those with chronic Achilles tendon pain
- No difference Type I collagen
 - Mokone et al 05, Collins et al 08
Age

- After the third decade, tendinopathy appears to increase dramatically
 - Evidence for this is lacking
 - Compressed tendons under some load seem vulnerable
 - Gluteus medius
 - Rotator cuff
- They do not become pathological just because they are older

- Tendons lose
 - Proteoglycans
 - Water
- Become stiffer
 - Less capable of absorbing load
Young people

Are also at risk in tensile loaded tendons

<table>
<thead>
<tr>
<th>Number of patellar tendons imaged</th>
<th>US abnormality as relative risk for symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 female basketball Khan 1997</td>
<td>Same as past symptoms</td>
</tr>
<tr>
<td>54 young athletes Cook 2000</td>
<td>3 times greater risk in 14-18 yr</td>
</tr>
<tr>
<td>40 male athletes Cook 2001</td>
<td>No greater risk</td>
</tr>
<tr>
<td>54 male athletes Fred berg 2002</td>
<td>No greater risk</td>
</tr>
</tbody>
</table>
Body composition

- BMI in subjects that failed the Achilles eccentric program higher (>28) than in responders (Alfredson et al)
- BMI correlated with pathology score (Mokone et al)
- BMI over 35 increased risk of shoulder tendon surgery by more than 3 times (Wendleboe et al 04)
BMI as a RISK factor for upper extremity tendinitis

Cohort study in 500 workers over 5 years

- No baseline symptoms
- Clinical diagnosis of wrist, elbow or shoulder tendinopathy
- Aside from symptoms and history of other conditions (CTS), BMI was the ONLY significant factor
 - 29.5 UET, 27.7 no UET (no variance reported)
- Age, sex, job, exercise, smoking, support, stress, disease all not significant
 - Werner et al 05
Body composition

- Systematic review identified 41 studies that examined tendons and body fat
 - 19 found a significant association (Gaida et al, submitted)
 - Trends in same direction for all but two of the remaining studies
Waist and pathology

Malliaras et al. 06
How does fat affect tendons?

- **Cytokines**
 - Visceral fat excretes pro-inflammatory cytokines
 - IL-6, IL-1
 - Also factors known to be associated with bone-tendon junction pathology
 - TNF-α

- **Lipid deposition**
 - In arteries
 - Vascular compromise
 - In tendons
 - Tendolipomatosis
 - Seen in familial hypercholesterolaemia
 - Cholesterol levels linked to Achilles tendinopathy
 - 70% of those examined had elevated cholesterol levels
 (Gaida et al 09)
Lipids

- **= Tot Chol, = LDL**
- **↑ Triglyceride**
- **↓ %HDL–C**
- **↑ TG/HDL–C**
- **↑ APO–B**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Achilles</th>
<th>Control</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chol (mmol/L)</td>
<td>5.47 (1.02)</td>
<td>5.16 (1.00)</td>
<td>0.094</td>
</tr>
<tr>
<td>TG (mmol/L)</td>
<td>1.22 (0.77)</td>
<td>0.96 (0.47)</td>
<td>0.039</td>
</tr>
<tr>
<td>HDL (mmol/L)</td>
<td>1.44 (0.39)</td>
<td>1.58 (0.48)</td>
<td>0.097</td>
</tr>
<tr>
<td>%HDL</td>
<td>27.6 (8.5)</td>
<td>31.9 (10.3)</td>
<td>0.016</td>
</tr>
<tr>
<td>LDL (mmol/L)</td>
<td>3.37 (0.86)</td>
<td>3.14 (0.93)</td>
<td>0.166</td>
</tr>
<tr>
<td>LDL/HDL</td>
<td>2.53 (0.98)</td>
<td>2.18 (0.93)</td>
<td>0.052</td>
</tr>
<tr>
<td>TG/HDL</td>
<td>0.941 (0.746)</td>
<td>0.691 (0.459)</td>
<td>0.036</td>
</tr>
<tr>
<td>ApoB (mg/L)</td>
<td>1005 (230)</td>
<td>896 (231)</td>
<td>0.017</td>
</tr>
</tbody>
</table>
Clinical application

- If you exercise (increased load)
 - With a genetic predisposition to tendon disease and/or central fat storage
 - AND you are fat
- You may have a series of factors that leave you vulnerable to tendon disease
Factors that affect the Achilles

- So how might fat explain other populations with tendinopathy?
 - Sedentary people might have higher fat mass
 - Surgery in athletic and not athletic populations
 - NA were shorter, heavier (higher BMI), higher subcutaneous fat
 - 25/48 good result cf 32/45, VISA 88 cf 74
 - Suffered more wound infection and sensitivity, more hypertrophic scarring, more repeat surgery
 - Maffulli et al 07
 - Middle aged men have higher visceral fat levels
 - Post menopausal women change fat deposition from subcutaneous to visceral
Factors that affect the Achilles

- **Sex**
 - Women get less Achilles mid-tendinopathy than men
 - Is oestrogen a factor?
 - Female hormones may be protective of tendons
 - Non-load related tendinopathy in post-menopausal women
 - Increased incidence in rupture post menopause
Role of female hormones in Achilles tendinopathy

- 95 post-menopausal women
 - Achilles tendon US
 - VISA-A score
 - Golfers and controls
 - Current and never HRT

Results
- Positive effect from HRT
- Negative effect from golf
 - More pathology
 - Larger tendons

Cook et al 2007
Summary

- Tendinopathy has a range of factors that contribute to it.
- Occurs in tendons with a variety of loads:
 - The pathology is likely the same.
 - The aetiology is likely different.
- Understanding and addressing the factors associated with the condition may improve outcomes.
Why do eccentric programs work?

- Decreased eccentric strength?
 - Haglund–Akerlind 93
- Neuroirritant
 - Soft tissue firm tissue interface
- Muscle effects
 - Increased length of MTU
- Effects on matrix structure
- Fluctuating length–force relationship
 - Rees 2008
- Decrease in cross sectional area after eccentric exercise
 - Bryant et al 08
Effects of a single bout of exercise

- A single bout of eccentric exercise
 - decreases cross-sectional area in normal tenons
 - In abnormal tendon increased tendon
 - Signal by 31%
 - Volume by 17%
 - Shalabi 04
Effect of an eccentric exercise program

PICP (ug/l)

<table>
<thead>
<tr>
<th>Sick tendon</th>
<th>Healthy tendon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>After</td>
</tr>
<tr>
<td>Before</td>
<td>After</td>
</tr>
</tbody>
</table>

- **Activity related Achilles tendon pain (>3 months)**
- **Elite football players 12 weeks training**
- **Microdialysis Achilles region Sick + healthy side (n=10)**

Langberg, Ellingsgaard & Kjær 07
Benefits and limitations of eccentric recipes

- **Benefits**
 - Easy to apply
 - Known outcomes
 - Both programs are progressive tendon loading

- **Limitations**
 - Population specific
 - Most evidence in middle aged recreational athletes
 - Alfredson program yields very good results in older, pre-surgical cohorts
 \textit{Alfredson} 1998, 2000, 2001
 - Evidence in elite?
 - Do these athletes need a speed program?
 - Evidence in non athletic cohort
 - Poorer outcome Maffulli 06
Not just eccentric exercise

- Achilles
 - All did general and specific strength
 - Not just eccentrics
 - Randomised 2 groups
 - One allowed to stay active
 - <5/10 pain
 - One rehab only

- No difference in outcome
 - Silbernagel (in press)
Eccentric exercise compared to stretching

- Eccentric vs stretching
 Lateral elbow tendinopathy
 RCT
 - n=38
 - Matched age, symptoms
 - 3 sets of 5 reps with dumbbell
 - Started at 1 kg (M) and 0.5 kg (F)
 - Increased weight 10% weekly
 - Exercises intended to be pain free
 - Svernlov & Adolfsson 01

- 71% vs 39% completely recovered @ 12 mths
 - p = 0.09

- Greater increase in grip strength in exercise group
 - p < 0.05
Eccentric exercise compared to stretching

- Achilles RCT, n=45
 - Eccentric vs 30 s stretch both bent and straight knee
- No difference (?) in outcome
 - 3 and 12 months
- Issues
 - Follow up
 - Outcome measures
 - US, palpation and unvalidated questionnaires
 - Norregaard et al 07
Not just eccentric exercise

- High load resistance training
 - Patellar tendon
 - 3 groups
 - Decline squat, heavy load resistance, control
 - Heavy slow resistance better than decline at 12 weeks
 - Kongsgaard et al (in press)
 - Similar results with Bronstromm machine
 - Frohm et al
Any exercise helps tendons

Odds ratio 13 (3-47)

Holmich, Lancet, 1999
As long as it has an eccentric part

- Randomized controlled trial
- Heel drops
 - n=22
- Heel raises
 - n=22
- Same routine
- 82% success rate in eccentric group
 - VAS from 69 to 12
- 36% success rate in concentric group
 - p<.002

Mafl, Lorentzon, Alfredson, KSSTA, 2001
Eccentric exercise in season

- Unsuccessful in patellar tendon
 - Visnes, Fredberg

- Soccer players
 - Randomised to intervention or control
 - Intervention stretching and eccentric exercise
 - 25 times each leg, 3 sets, 3 times a week
 - No difference in outcome
 - 9% of normals developed US changes both groups
 - RR of developing symptoms 2.8 (1.6, 4.9) in both groups if US abnormal at baseline

- Eccentrics have never been shown to have a preventative role
 - In-season loads are high
Summary of eccentric programs

- Good starting point
 - Especially in the population they have been shown effective
- Will it adapt the muscle-tendon unit to required load capacity?
 - Yes – go right ahead, remember it is NOT a muscle strengthening program
 - No – add more or do different program
- Have strategies and time frames to vary program if necessary
 - Added interventions
 - Altered interventions
Tendon rehabilitation

- The cornerstones of tendon rehabilitation is a good assessment
 - Defining the stage of tendinopathy
 - Patient history
 - Diagnostic ultrasound
 - Quantify tendon symptoms & function
 - Loading tests
- And then providing the right stimulus to the tendon
 - Modify the tendon load
 - Training
 - Biomechanical
 - Progressive loading/exercise program as required
 - Affected by presentation, timing
Define the stage
– Patient history

- Age
- History of onset
 - First episode?
 - Exercise history
 - Periods of down-time
- Person factors
 - General health
 - Diabetes, inflammatory diseases, gout
 - Lipid profile
 - Waist girth
 - Cholesterol
 - Other tendinopathies
 - Biomechanics
Physical assessment

- Confirm pain localisation
 - Include related structures
- Assess load – pain response
 - Progressive load
 - Pain score /10
- Irritability
 - 24 hour response to training load
 - Morning stiffness in Achilles
- Assess kinetic chain
 - Atrophy
 - ROM – Ankle, foot and other m–t units
 - Strength, power, fatigability
 - Dynamic, sports–related function

www.fisiokinesiterapia.biz
What are we trying to achieve with rehab?

- Avoid exacerbation of the tendon cells/matrix
 - Unload the affected tendon
- Remodelling of matrix through graduated and specific loading
 - Is the sub–acute tendinopathy weak? – probably not
- Maintain/improve function of muscle, kinetic chain and athlete
 - Load progression geared towards a return to sport
Tendon unloading and reloading

- Prolonged periods of unloading are not beneficial to the matrix
 - Greater than 2–3 weeks
- Mechano-transduction theory would support slower/lower impulse loading in acute phase
 - Less likely to up-regulate the tenocytes or matrix
- Elastic function loading sessions only every 3rd or 4th day \textit{Langberg 1999, Cook 2003, Silbernagel 2004}
- Structure high, low, medium tendon load day
 - Strength day, power day, energy storage day
What else?

- Prehab in those with known tendinopathy and/or symptoms
 - Maintain strength always
- Monitoring
 - Use provocative tests
- Early intervention
 - Stitch in time approach
- Training planning
 - Ideal vs real
 - Negotiate with coach....
What doesn’t help?

- High load drills/exercises with little recovery
 - Plyometrics
- Painful eccentric programs
 - in acute onset pain, in-season
- Rehab using solely eccentric exercise
- Ultrasound & frictions
 - Tenocyte activation
- Glucosamine compounds
 - Inhibition of breakdown of aggrecan
Current thoughts

- Staging the condition is a key to optimal medical and rehabilitation management
- Latent (24 hr) pain response is probably the most useful guide to load progression
- Early tendinopathies are essentially load management
- High load, painful eccentric programs are not indicated in all tendinopathies
Treating tendinopathy

- Identify if you think compression is a factor
 - If so, limit the compression on the tendon
- Identify factors that might influence outcome
 - Fat is easy
 - Genes, sex a bit harder
- Identify if they are in a population that responds to an eccentric program
 - Middle ages recreational athletes
 - If so, start with that
 - Otherwise consider other factors that might impact on outcome
Summary

- Exercise is the most potent stimulus to maintain and remodel the matrix
- Maintenance and prevention
 - Kinetic chain analysis
 - Off season pre–habilitation
 - In season maintenance of strength
 - Regular monitoring & early intervention
 - Care with programming of change of load

There is no magic bullet!