# New insights into the mechanisms of tendon injury



# This lecture

1.What other factors affect onset of tendinopathy?

2. What treatments are best for tendinopathy?



Figure 2 Complex interaction between internal and external risk factors leading to an inciting event and resulting in injury.



Bahr, R et al. Br J Sports Med 2005;39:324-329



# What factors predispose a person to tendon injury?

- In some tendons, extrinsic factors (load) make a person susceptible
  - Young active men
    - Patellar tendon in jumping athletes
    - Adductor tendon in kicking athletes
- In some tendons it appears that intrisic factors have a strong influence
  - Older sedentary women
    - Gluteal tendinopathy (? Long term compressive loads)
    - Supraspinatus
      - Both sexes

# Tendinopathy

- Achilles tendon is heterogeneous in prevalence and onset
- Intrinsic and extrinsic factors are evident
  - Presents across a range of ages and activity
  - 11% lifetime incidence (Kujala et al 07)
    - Young high load athletes
    - Middle aged moderate load people
    - Older low load post menopausal women (Maffulli et al)
    - Sedentary people



# Tendinopathy is a person disease with a load topping

- Tendinopathy in systemic disease
  - Diabetes, arthridites
- Collagen diseases
  - Marfan's, Ehlers-Danlos
- Drug induced tendinopathies
  - Statins, fluroquinolones
- What intrinisic factors have been shown to affect tendons?
  - Genes
  - Age
  - Sex
  - Body composition

Biomechanics

#### Genes

Blood group

- Yes (Kannus et al 91, Jarvinen 92)
- No (Maffulli)
- Specific polymorphisms for type V collagen and tenascin-C gene are more common in those with chronic Achilles tendon pain
  - No difference Type I collagen
    - Mokone et al 05, Collins et al 08





# Age

- After the third decade tendinopathy appears to increase dramatically
  - Evidence for this is lacking
  - Compressed tendons under some load seem vulnerable
    - Gluteus medius
    - Rotator cuff
- They do not become pathological just because they are older

- Tendons lose
  - Proteoglycans
  - Water
- Become stiffer
  - Less capable of absorbing load

# Young people

# Are also at risk in tensile loaded tendons

| Number of patellar tendons imaged  | US abnormality as relative risk for symptoms |  |  |
|------------------------------------|----------------------------------------------|--|--|
| 48 female basketball<br>Khan 1997  | Same as past symptoms                        |  |  |
| 54 young athletes<br>Cook 2000     | 3 times greater risk in 14-18 yr             |  |  |
| 40 male athletes<br>Cook 2001      | No greater risk                              |  |  |
| 54 male athletes<br>Fred berg 2002 | No greater risk                              |  |  |

# **Body composition**

- BMI in subjects that failed the Achilles eccentric program higher (>28) than in responders (Alfredson et al)
- BMI correlated with pathology score (Mokone et al)
- BMI over 35 increased risk of shoulder tendon surgery by more than 3 times (Wendleboe et al 04)



#### **Body composition**

- BMI as a RISK factor for upper extremity tendinitis
- Cohort study in 500 workers over 5 years
  - No baseline symptoms
  - Clinical diagnosis of wrist, elbow or shoulder tendinopathy
  - Aside from symptoms and history of other conditions (CTS), BMI was the ONLY significant factor
    - 29.5 UET, 27.7 no UET (no variance reported)
  - Age, sex, job, exercise, smoking, support, stress, disease all not significant
    - Werner et al 05

# **Body composition**

- Systematic review identified 41 studies that examined tendons and body fat
  - 19 found a significant association (Gaida et al, submitted)
  - Trends in same direction for all but two of the remaining studies



## Waist and pathology



# How does fat affect tendons?

- Cytokines
  - Visceral fat excretes pro-inflammatory cytokines
    - IL-6, IL-1
  - Also factors known to be associated with bonetendon junction pathology
    - TNF-a
- Lipid deposition
  - In arteries
    - Vascular compromise
  - In tendons
    - Tendolipomatosis
      - Seen in familial hypercholesterolaemia
    - Cholesterol levels linked to Achilles tendinopathy
    - 70% of those examined had elevated cholesterol levels (Gaida et al 09)



# Lipids

| Tot Chol, = LDI | Variable           | Achilles      | Control       | р     |
|-----------------|--------------------|---------------|---------------|-------|
|                 | _<br>Chol (mmol/L) | 5.47 (1.02)   | 5.16 (1.00)   | 0.094 |
| Triglyceride    | TG (mmol/L)        | 1.22 (0.77)   | 0.96 (0.47)   | 0.039 |
|                 | HDL (mmol/L)       | 1.44 (0.39)   | 1.58 (0.48)   | 0.097 |
| ■ ↓ %HDL-C      | %HDL               | 27.6 (8.5)    | 31.9 (10.3)   | 0.016 |
|                 | LDL (mmol/L)       | 3.37 (0.86)   | 3.14 (0.93)   | 0.166 |
| ■ ↑ TG/HDL–C    | LDL/HDL            | 2.53 (0.98)   | 2.18 (0.93)   | 0.052 |
|                 | TG/HDL             | 0.941 (0.746) | 0.691 (0.459) | 0.036 |
| ■ ↑ APO-B       | ApoB (mg/L)        | 1005 (230)    | 896 (231)     | 0.017 |
|                 |                    |               |               |       |

# **Clinical application**

- If you exercise (increased load)
  - With a genetic predisposition to tendon disease and/or central fat storage
  - AND you are fat
- You may have a series of factors that leave you vulnerable to tendon disease



# Factors that affect the Achilles

- So how might fat explain other populations with tendinopathy?
  - Sedentary people might have higher fat mass
    - Surgery in athletic and not athletic populations
      - NA were shorter, heavier (higher BMI), higher subcutaneous fat
        - 25/48 good result cf 32/45, VISA 88 cf 74
        - Suffered more wound infection and sensitivity, more hypertrophic scarring, more repeat surgery
        - Maffulli et al 07
  - Middle aged men have higher visceral fat levels
  - Post menopausal women change fat deposition from subcutaneous to visceral



#### Factors that affect the Achilles

#### Sex

- Women get less Achilles mid-tendinopathy than men
  - Is oestrogen a factor?
- Female hormones may be protective of tendons
  - Non-load related tendinopathy in postmenopausal women
  - Increased incidence in rupture post menopause



# Role of female hormones in Achilles tendinopathy

- 95 post-menopausal women
  - Achilles tendon US
  - VISA-A score
  - Golfers and controls
  - Current and never HRT
- Results
  - Positive effect from HRT
  - Negative effect from golf
    - More pathology
    - Larger tendons

Cook et al 2007





# Summary

- Tendinopathy has a range of factors that contribute to it
- Occurs in tendons with a variety of loads
  - The pathology is likely the same
  - The aetiology is likely different
- Understanding and addressing the factors associated with the condition may improve outcomes

### Why do eccentric programs work?

- Decreased eccentric strength?
  - Haglund-Akerlind 93
- Neuroirritant
  - Soft tissue firm tissue interface
- Muscle effects
  - Increased length of MTU
- Effects on matrix structure
- Fluctuating length-force relationship
  - Rees 2008
- Decrease in cross sectional area after eccentric exercise
  - Bryant et al 08

### Effects of a single bout of exercise

- A single bout of eccentric exercise
  - decreases crosssectional area in normal tenons
  - In abnormal tendon increased tendon
    - Signal by 31%
    - Volume by 17%
      - Shalabi 04



#### Effect of an eccentric exercise program



# Benefits and limitations of eccentric recipes

#### Benefits

- Easy to apply
- Known outcomes
- Both programs are progressive tendon loading
- Limitations
  - Population specific
    - Most evidence in middle aged recreational athletes
      - Alfredson program yields very good results <u>in older, pre-surgical</u> <u>cohorts</u> *Alfredson 1998, 2000, 2001*
      - Evidence in elite?
        - Do these athletes need a speed program?
      - Evidence in non athletic cohort
        - Poorer outcome Maffulli 06

## Not just eccentric exercise

- Achilles
  - All did general and specific strength
    - Not just eccentrics
  - Randomised 2 groups
    - One allowed to stay active
      - <5/10 pain
    - One rehab only
- No difference in outcome
  - Silbernagel (in press)



# Eccentric exercise compared to stretching

- Eccentric vs stretching Lateral elbow tendinopathy RCT
  - n=38
  - Matched age, symptoms
  - 3 sets of 5 reps with dumbbell
  - Started at 1 kg (M) and 0.5 kg (F)
    - Increased weight 10% weekly
    - •Exercises intended to be pain free
      - Svernlov & Adolfsson 01

- 71% vs 39% completely recovered @ 12 mths
  p = 0.09
- Greater increase in grip strength in exercise group
   p < 0.05</li>

# Eccentric exercise compared to stretching

- Achilles RCT, n=45
  - Eccentric vs 30 s stretch both bent and straight knee
- No difference (?) in outcome
  - 3 and 12 months
- Issues
  - Follow up
  - Outcome measures
    - US, palpation and unvalidated questionnaires
      - Norregaard et al 07



# Not just eccentric exercise

- High load resistance training
  - Patellar tendon
    - 3 groups
      - Decline squat, heavy load resistance, control
  - Heavy slow resistance better than decline at 12 weeks
    - Kongsgaard et al (in press)
  - Similar results with Bronstromm machine
    - Frohm et al



### Any exercise helps tendons



Holmich, Lancet, 1999

#### As long as it has an eccentric part

- Randomized controlled trial
- Heel drops
  - n=22
- Heel raises
  - n=22
- Same routine

- 82% success rate in eccentric group
   VAS from 69 to 12
- 36% success rate in concentric group
   p<.002</li>

Mafi, Lorentzon, Alfredson, KSSTA, 2001



### Eccentric exercise in season

- Unsuccessful in patellar tendon
  - Visnes, Fredberg
- Soccer players
  - Randomised to intervention or control
    - Intervention stretching and eccentric exercise
      - 25 times each leg, 3 sets, 3 times a week
  - No difference in outcome
    - 9% of normals developed US changes both groups
    - RR of developing symptoms 2.8 (1.6,4.9) in both groups if US abnormal at baseline
- Eccentrics have never been shown to have a preventative role
  - In-season loads are high



### Summary of eccentric programs

- Good starting point
  - Especially in the population they have been shown effective
- Will it adapt the muscle-tendon unit to required load capacity?
  - Yes go right ahead, remember it is NOT a muscle strengthening program
  - No add more or do different program
- Have strategies and time frames to vary program if necessary
  - Added interventions
  - Altered interventions



### **Tendon rehabilitation**

- The cornerstones of tendon rehabilitation is a good assessment
  - Defining the stage of tendinopathy
    - Patient history
    - Diagnostic ultrasound
  - Quantify tendon symptoms & function
    - Loading tests
- And then providing the right stimulus to the tendon
  - Modify the tendon load
    - Training
    - Biomechanical
  - Progressive loading/exercise program as required
    - Affected by presentation, timing



#### Define the stage – Patient history

- Age
- History of onset
  - First episode?
  - Exercise history
    - Periods of down-time
- Person factors
  - General health
    - Diabetes, inflammatory diseases, gout
  - Lipid profile
    - Waist girth
    - Cholesterol
  - Other tendinopathies
  - Biomechanics

### **Physical assessment**

#### Confirm pain localisation

- Include related structures
- Assess load pain response
  - Progressive load
  - Pain score /10
- Irritability
  - 24 hour response to training load
  - Morning stiffness in Achilles
- Assess kinetic chain
  - Atrophy
  - ROM Ankle, foot and other m-t units
  - Strength, power, fatigability
  - Dynamic, sports-related function





# What are we trying to achieve with rehab?

- Avoid exacerbation of the tendon cells/matrix
  - Unload the affected tendon
- Remodelling of matrix through graduated and specific loading
  - Is the sub-acute tendinopathy weak? probably not
- Maintain/improve function of muscle, kinetic chain and athlete
  - Load progression geared towards a return to sport



# **Tendon unloading and reloading**

- Prolonged periods of unloading are not beneficial to the matrix
  - Greater than 2-3 weeks
- Mechano-transduction theory would support slower/lower impulse loading in acute phase
  - Less likely to up-regulate the tenocytes or matrix
- Elastic function loading sessions only every 3<sup>rd</sup> or 4<sup>th</sup> day Langberg 1999, Cook 2003, Silbernagel 2004
- Structure high, low, medium tendon load day
  - Strength day, power day, energy storage day



### What else?

- Prehab in those with known tendinopathy and/or symptoms
  - Maintain strength always
- Monitoring
  - Use provocative tests
- Early intervention
  - Stitch in time approach
- Training planning
  - Ideal vs real
  - Negotiate with coach....



### What doesn't help?

- High load drills/exercises with little recovery
  - Plyometrics
- Painful eccentric programs
  - in acute onset pain, inseason
- Rehab using solely eccentric exercise
- Ultrasound & frictions
  - Tenocyte activation
- Glucosamine compounds
  - Inhibition of breakdown of aggrecan



### **Current thoughts**

- Staging the condition is a key to optimal medical and rehabilitation management
- Latent (24 hr) pain response is probably the most useful guide to load progression
- Early tendinopathies are essentially load management
- High load, painful eccentric programs are not indicated in all tendinopathies



# Treating tendinopathy

- Identify if you think compression is a factor
  - If so, limit the compression on the tendon
- Identify factors that might influence outcome
  - Fat is easy
  - Genes, sex a bit harder
- Identify if they are in a population that responds to an eccentric program
  - Middle ages recreational athletes
    - If so, start with that
    - Otherwise consider other factors that might impact on outcome



# Summary

- Exercise is the most potent stimulus to maintain and remodel the matrix
- Maintenance and prevention
  - Kinetic chain analysis
  - Off season pre-habilitation
  - In season maintenance of strength
  - Regular monitoring & early intervention
  - Care with programming of change of load There is no magic bullet!

