### Head: Special Senses

Taste
Smell
Vision
Hearing/Balance

www.fisiokinesiterapia.biz

### TASTE: how does it work?

- Taste buds on tongue on fungiform papillae ("mushroom-like projections)
- Each "bud" contains several cell types in microvilli that project through pore and chemically sense food
- Gustatory receptor cells communicate with cranial nerve axon endings to transmit sensation to brain



M&M, Fig. 16.1



Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

### Five taste sensations

Sweet—front middle ♦ Sour—middle sides Salty—front side/tip ♦ Bitter —back ♦ "umami" posterior pharynx M&M, Fig. 16.1



Int



Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

### Smell: How does it work?

- Olfactory epithelium in nasal cavity with special olfactory receptor cells
- Receptor cells have endings that respond to unique proteins
- Every odor has particular signature that triggers a certain combination of cells
- Axons of receptor cells carry message back to brain
- Basal cells continually replace receptor cells—they are only neurons that are continuously replaced throughout life.



### Vision

- 1. Movement of eye—extrinsic eye muscles and location in orbit
- 2. Support of eye—lids, brows, lashes, tears, conjunctiva
- 3. Lens and focusing—structures of eyeball and eye as optical device
- 4. Retina and photoreceptors



# Movement of eye

Eye movement simulator (<u>http://cim.ucdavis.edu/ey</u> <u>es/version1/eyesim.htm</u>)

## Extrinsic eye muscles

| Muscle         | Movement                          | Nerve          |
|----------------|-----------------------------------|----------------|
| Superior       | Depresses eye,<br>turns laterally | IV (Trochlear) |
| Lateral rectus | Turns laterally                   | VI (Abducens)  |
| Medial rectus  | Turns medially                    |                |
| Superior       | Elevates                          | (Aculomotor)   |
| <b>Thetus</b>  | Depresses eye                     | (Aculomotor)   |
| <b>Thetus</b>  | Elevates eye,                     | (Presignation) |
| oblique        | turns laterally                   |                |
|                | isiokinesiter                     | ania hiz       |

 $\mathbf{U}\mathbf{U}$ 



Support/Maintenance of Eye Eyebrows: shade, shield for perspiration Eyelids (palpebrae): skin-covered folds with "tarsal plates" connective tissue inside - Levator palpebrae superioris muscle opens eye (superior portion is smooth muscle—why?) Canthus (plural canthi): corner of eye - Lacrimal caruncle makes eye "sand" at medial corner - Epicanthal folds in many Asian people cover caruncle

- Tarsal glands make oil to slow drying

Eyelash—ciliary gland at hair follicle—infection

## Support of Eye--conjunctiva

Mucous membrane that coats inner surface of eyelid (palpebral part) and then folds back onto surface of eye (ocular part)

- Thin layer of connective tissue covered with stratified columnar epithelium
- Very thin and transparent, showing blood vessels underneath (blood-shot eyes)
- Goblet cells in epithelium secrete mucous to keep eyes moist



 Vitamin A necessary for all epithelial secretions—lack leads



### Support of eye--tears

 Lacrimal glands superficial/lateral in orbit, produce tears

 Lacrimal duct (nasolacrimal duct)

medial corner of eye carries tears to nasal cavity (frequently closed in newbornsopens by 1 yr usually)

 Tears contain mucous, antibodies, lysozyme (anti-



Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

### Eye as lens/optical device



#### M&M, fig. 16.7

(a)

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Light path: Cornea  $\rightarrow$  Anterior segment  $\rightarrow$ Pupil  $\rightarrow$  Lens  $\rightarrow$  Posterior segment  $\rightarrow$  Neural layer of retina  $\rightarrow$  Pigmented retina

### Eye as optical device--structures

- Sclera (fibrous tunic): is tough connective tissue ball that forms outside of eyeball
  - like box/case of camera
  - Corresponds to dura mater of brain
- Cornea: anterior transparent part of sclera (scratched cornea is typical sports injury); begins focusing light
- Choroid Internal to sclera/cornea
  - Highly vascularized
  - Darkly pigmented (for light absorption inside box)
- Ciliary body: thick ring of tissue that encircles and holds lens
- Iris: colored part of eye between lens and cornea, attached at base to ciliary body
- Pupil: opening in middle of iris
- Retina: sensory layer that responds to light and transmits visual signal to brain



### **Detail:** Aperture and focus



 APERTURE
 Pupil changes shape due to intrinsic autonomic muscles
 Sympathetic: Dilator pupilla

Dilator pupillae (radial fibers)

- Parasympathetic:

#### Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

(animation of lens

http://artsci.shu.edu/biology/Student%20Pages/Kyle%20Keenan/eye/lensmovementnrve.html

### FOCUS

- Ciliary muscles in ciliary body pull on lens to focus far away
- Elasticity of lens brings back to close focus
- Thus, with age, less elasticity, no close focus $\rightarrow$  far-sighted

### Detail: eye color

 Posterior part of iris always brown in color

 People with brown/black eyes with pigment throughout iris
 People with blue eyes—rest of iris clear, brown pigment at back appears blue after passing through iris/cornea

### **Details:** Retina and photoreceptors

- Retina is outgrowth of brain
  - Neurons have specialized receptors at end with "photo pigment" proteins (rhodopsins)
    - Rod cells function in dim light, not color-tuned
    - Cone cells have three types: blue, red, green
    - In color blindness, gene for one type of rhodopsin is deficient, usually red or green
- Photoreceptors sit on pigmented layer of choroid. Pigment from melanocytes--melanoma possible in retina!!
- Axons of photoreceptors pass on top or superficial to photoreceptor region
- Axons congregate and leave retina at optic disc (blind spot)
- Fovea centralis is in direct line with lens, where light is focused most directly, and has intense cone cell population (low light night vision best from side of eye)
- Blood vessels superficial to photoreceptors (retina is good sight to check for small vessel disease in diabetes)





## Middle Ear

External auditory canal ends at tympanic membrane which vibrates against malleus on other side

- Inside middle ear chamber
  - malleus→incus →stapes which vibrates on oval window of inner ear
- Muscles that inhibit vibration when sound is too loud
  - Tensor tympani m. (inserts on malleus)
  - Stapedius m. (inserts on stapes)



Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

M&M, fig. 16.19



### Static equilibrium, linear motion

- Utricle, saccule are egg-shaped sacs in center (vestibule) of labyrinth
- 3-D motion, angular acceleration
  - 3 semicircular canals for X,Y,Z planes
- Sound vibrations

Auditory Nerve (Acoustic) VIII receives stimulus from all to brain Vestibular n.—equilibrium Cochlear n.—hearing

