Essentials of Human Anatomy & Physiology

The Nervous System

www.fisiokinesiterapia.biz

Functions of the Nervous System

- 1. Sensory input gathering information
 - To monitor changes occurring inside and outside the body (changes = stimuli)
- 2. Integration
 - to process and interpret sensory input and decide if action is needed.
- 3. Motor output
 - A response to integrated stimuli
 - The response activates muscles or glands

Structural Classification of the Nervous System

- Central nervous system (CNS)
 - Brain
 - Spinal cord
- Peripheral nervous system (PNS)
 - Nerve outside the brain and spinal cord

Functional Classification of the Peripheral Nervous System

- Sensory (afferent) division
 - Nerve fibers that carry information to the central nervous system

Functional Classification of the Peripheral Nervous System

- Motor (efferent) division
 - Nerve fibers that carry impulses away from the central nervous system

Functional Classification of the Peripheral Nervous System

- Motor (efferent) division
 - Two subdivisions
 - Somatic nervous system = voluntary
 - Autonomic nervous system = involuntary

Organization of the Nervous System

Nervous Tissue: Support Cells (Neuroglia or Glia)

Astrocytes

Abundant, star-shaped cells

- Brace neurons
- Form barrier between capillaries and neurons
- Control the chemical environment of the brain (CNS)

Nervous Tissue: Support Cells

- Microglia (CNS)
 - Spider-like phagocytes
 - Dispose of debris
- Ependymal cells (CNS)
 - Line cavities of the brain and spinal cor
 - Circulate cerebrospinal fluid

(b) Microglial cell

Nervous Tissue: Support Cells

Oligodendrocytes (CNS)

 Produce myelin sheath around nerve fibers in the central nervous system

Neuroglia vs. Neurons

- Neuroglia divide.
- Neurons do not.
- Most brain tumors are "gliomas."
- Most brain tumors involve the neuroglia cells, not the neurons.
- Consider the role of cell division in cancer!

Support Cells of the PNS

- Satellite cells
 - Protect neuron cell bodies
- Schwann cells
 - Form myelin sheath in the peripheral nervous system

(e) Sensory neuron with Schwann cells and satellite cells

Nervous Tissue: Neurons

Neurons = nerve cells

- Cells specialized to transmit messages
- Major regions of neurons
 - Cell body nucleus and metabolic center of the cell
 - Processes fibers that extend from the cell body (dendrites and axons)

Slide 7.9b

Neuron Anatomy

- Extensions outside the cell body
 - Dendrites conduct impulses toward the cell body
 - Axons conduct impulses away from the cell body (only 1!)

Slide 7.10

Axons and Nerve Impulses

- Axons end in axonal terminals
- Axonal terminals contain vesicles with neurotransmitters
- Axonal terminals are separated from the next neuron by a gap
 - Synaptic cleft gap between adjacent neurons
 - Synapse junction between nerves

Nerve Fiber Coverings

- Schwann cells produce myelin sheaths in jelly-roll like fashion
- Nodes of Ranvier gaps in myelin sheath along the axon

Slide 7.12

Application

- In Multiple Scleroses the myelin sheath is destroyed.
- The myelin sheath hardens to a tissue called the scleroses.
- This is considered an autoimmune disease.
- Why does MS appear to affect the muscles?

Neuron Cell Body Location

- Most are found in the central nervous system
 - Gray matter cell bodies and unmylenated fibers
 - Nuclei clusters of cell bodies within the white matter of the central nervous system
- Ganglia collections of cell bodies outside the central nervous system

Functional Classification of Neurons

- Sensory (afferent) neurons
 - Carry impulses from the sensory receptors
 - Cutaneous sense organs
 - Proprioceptors detect stretch or tension
- Motor (efferent) neurons
 - Carry impulses from the central nervous system

Functional Classification of Neurons

- Interneurons (association neurons)
 - Found in neural pathways in the central nervous system
 - Connect sensory and motor neurons

Neuron Classification

Structural Classification of Neurons

Multipolar neurons – many extensions from the cell body

Figure 7.8a

Structural Classification of Neurons

 Bipolar neurons – one axon and one dendrite

Figure 7.8b

Structural Classification of Neurons

 Unipolar neurons – have a short single process leaving the cell body

Figure 7.8c

How Neurons Function (Physiology)

- Irritability ability to respond to stimuli
- Conductivity ability to transmit an impulse
- The plasma membrane at rest is polarized
 - Fewer positive ions are inside the cell than outside the cell

Starting a Nerve Impulse

- Depolarization a stimulus depolarizes the neuron's membrane
- A deploarized membrane allows sodium (Na⁺) to flow inside the membrane
- The exchange of ions initiates an action potential in the neuron

Figure 7.9a–c *Slide 7.18*

The Action Potential

- If the action potential (nerve impulse) starts, it is propagated over the entire axon
- Potassium ions rush out of the neuron after sodium ions rush in, which repolarizes the membrane
- The sodium-potassium pump restores the original configuration
 - This action requires ATP

Nerve Impulse Propagation

- The impulse continues to move toward the cell body
- Impulses travel faster when fibers have a myelin sheath

(c) Depolarization and generation of the action potential

(d) Propagation of the action potential

(e) Repolarization

Figure 7.9c-e

Slide 7.20

Continuation of the Nerve Impulse between Neurons

- Impulses are able to cross the synapse to another nerve
 - Neurotransmitter is released from a nerve's axon terminal
 - The dendrite of the next neuron has receptors that are stimulated by the neurotransmitter
 - An action potential is started in the dendrite

How Neurons Communicate at Synapses

Slide 7.22

The Reflex Arc

- Reflex rapid, predictable, and involuntary responses to stimuli
- Reflex arc direct route from a sensory neuron, to an interneuron, to an effector

Figure 7.11a

Slide 7.23

Simple Reflex Arc

Types of Reflexes and Regulation

- Autonomic reflexes
 - Smooth muscle regulation
 - Heart and blood pressure regulation
 - Regulation of glands
 - Digestive system regulation
- Somatic reflexes
 - Activation of skeletal muscles

Central Nervous System (CNS)

- CNS develops from the embryonic neural tube
 - The neural tube becomes the brain and spinal cord
 - The opening of the neural tube becomes the ventricles
 - Four chambers within the brain
 - Filled with cerebrospinal fluid
Regions of the Brain

- Cerebral hemispheres
- Diencephalon
- Brain stem
- Cerebellum

www.fisiokinesiterapia.biz

Cerebral Hemispheres (Cerebrum)

- Paired (left and right) superior parts of the brain
- Include more than half of the brain mass

Slide 7 28a

Cerebral Hemispheres (Cerebrum)

 The surface is made of ridges (gyri) and grooves (sulci)

> Slide 7 28h

Lobes of the Cerebrum

- Fissures (deep grooves) divide the cerebrum into lobes
- Surface lobes of the cerebrum
 - Frontal lobe
 - Parietal lobe
 - Occipital lobe
 - Temporal lobe

Slide 7 29a

Lobes of the Cerebrum

Specialized Areas of the Cerebrum

- Somatic sensory area receives impulses from the body's sensory receptors
- Primary motor area sends impulses to skeletal muscles
- Broca's area involved in our ability to speak

Sensory and Motor Areas of the Cerebral Cortex

Slide 7.31

Specialized Area of the Cerebrum

Cerebral areas involved in special senses

- Gustatory area (taste)
- Visual area
- Auditory area
- Olfactory area

Specialized Area of the Cerebrum

- Interpretation areas of the cerebrum
 - Speech/language region
 - Language comprehension region
 - General interpretation area

Slide 7 32h

Specialized Area of the Cerebrum

Figure 7.13c

Layers of the Cerebrum

- Gray matter
 - Outer layer
 - Composed mostly of neuron cell bodies

Figure 7.13a

Layers of the Cerebrum

- White matter
 - Fiber tracts inside the gray matter
 - Example: corpus callosum connects hemispheres

Layers of the Cerebrum

- Basal nuclei internal islands of gray matter
- Regulates voluntary motor activities by modifying info sent to the motor cortex
- Problems = ie unable to control muscles, spastic, jerky
- Involved in Huntington's and Parkinson's Disease

Diencephalon

- Sits on top of the brain stem
- Enclosed by the cerebral heispheres
- Made of three parts
 - Thalamus
 - Hypothalamus
 - Epithalamus

Slide

Diencephalon

Figure 7.15

Slide 7 31h

Thalamus

- Surrounds the third ventricle
- The relay station for sensory impulses
- Transfers impulses to the correct part of the cortex for localization and interpretation

Hypothalamus

- Under the thalamus
- Important autonomic nervous system center
 - Helps regulate body temperature
 - Controls water balance
 - Regulates metabolism

- An important part of the limbic system (emotions)
- The pituitary gland is attached to the hypothalamus

Epithalamus

- Forms the roof of the third ventricle
- Houses the pineal body (an endocrine gland)
- Includes the choroid plexus forms cerebrospinal fluid

Brain Stem

- Attaches to the spinal cord
- Parts of the brain stem
 - Midbrain
 - Pons
 - Medulla oblongata

Slide 7 389

Brain Stem

(a)

Figure 7.15a

Midbrain

- Mostly composed of tracts of nerve fibers
 - Reflex centers for vision and hearing
 - Cerebral aquaduct 3rd-4th ventricles

Pons

- The bulging center part of the brain stem
- Mostly composed of fiber tracts
- Includes nuclei involved in the control of breathing

Medulla Oblongata

- The lowest part of the brain stem
- Merges into the spinal cord
- Includes important fiber tracts
- Contains important control centers
 - Heart rate control
 - Blood pressure regulation
 - Breathing
 - Swallowing
 - Vomiting

Cerebellum

- Two hemispheres with convoluted surfaces
- Provides involuntary coordination of body movements

Cerebellum

Figure 7.15a

Protection of the Central Nervous System

- Scalp and skin
- Skull and vertebral column
- Meninges

Protection of the Central Nervous System

- Cerebrospinal fluid
- Blood brain barrier

Meninges

- Dura mater
 - Double-layered external covering
 - Periosteum attached to surface of the skull
 - Meningeal layer outer covering of the brain
 - Folds inward in several areas

Meninges

- Arachnoid layer
 - Middle layer
 - Web-like
- Pia mater
 - Internal layer
 - Clings to the surface of the brain

Cerebrospinal Fluid

Similar to blood plasma composition

- Formed by the choroid plexus
- Forms a watery cushion to protect the brain
- Circulated in arachnoid space, ventricles, and central canal of the spinal cord

Ventricles and Location of the Cerebrospinal Fluid

Slide 7 47a

Ventricles and Location of the Cerebrospinal Fluid

Blood Brain Barrier

- Includes the least permeable capillaries of the body
- Excludes many potentially harmful substances
- Useless against some substances
 - Fats and fat soluble molecules
 - Respiratory gases
 - Alcohol
 - Nicotine
 - Anesthesia

Traumatic Brain Injuries (TBI)

- Concussion
 - Slight or mild brain injury
 - Bleeding & tearing of nerve fibers happened
 - Recovery likely with some memory loss
- Contusion
 - A more severe TBI
 - Nervous tissue destruction occurs
 - Nervous tissue does not regenerate
- Cerebral edema
 - Curalling from the inflormatory roomano

Slide 7.49
- Cerebral edema
 - Swelling from the inflammatory response
 - May compress and kill brain tissue
- Subdural hematoma
 - Collection of blood below the dura
- Standards for these conditions were revised in 2004. Please check out TBIs at Mayoclinic.com for more current information on diagnostic terminology.

Cerebrovascular Accident (CVA)

- Commonly called a stroke
- The result of a ruptured blood vessel supplying a region of the brain
- Brain tissue supplied with oxygen from that blood source dies
- Loss of some functions or death may result

Alzheimer's Disease

- Progressive degenerative brain disease
- Mostly seen in the elderly, but may begin in middle age
- Structural changes in the brain include abnormal protein deposits and twisted fibers within neurons
- Victims experience memory loss, irritability, confusion and ultimately, hallucinations and death

Spinal Cord

- Extends from the medulla oblongata to the region of T12
- Below T12 is the cauda equina (a collection of spinal nerves)
- Enlargements occur in the cervical and lumbar regions

Exterior white mater – conduction tracts

- Internal gray matter mostly cell bodies
 - Dorsal (posterior) horns
 - Anterior (ventral) horns

 Central canal filled with cerebrospinal fluid

- Meninges cover the spinal cord
- Nerves leave at the level of each vertebrae
 - Dorsal root
 - Associated with the dorsal root ganglia collections of cell bodies outside the central nervous system
 - Ventral root

Peripheral Nervous System

- Nerves and ganglia outside the central nervous system
- Nerve = bundle of neuron fibers
- Neuron fibers are bundled by connective tissue

Structure of a Nerve

- Endoneurium surrounds each fiber
- Groups of fibers are bound into fascicles by perineurium
- Fascicles are bound together by epineurium

Classification of Nerves

- Mixed nerves both sensory and motor fibers
- Afferent (sensory) nerves carry impulses toward the CNS
- Efferent (motor) nerves carry impulses away from the CNS

Spinal Nerves

 There is a pair of spinal nerves at the level of each vertebrae.

Spinal Nerves

Autonomic Nervous System

- The involuntary branch of the nervous system
- Consists of only motor nerves
- Divided into two divisions
 - Sympathetic division
 - Parasympathetic division

Comparison of Somatic and Autonomic Nervous Systems

Anatomy of the Autonomic Nervous System

Figure 7.25

Autonomic Functioning

- Sympathetic "fight-or-flight"
 - Response to unusual stimulus
 - Takes over to increase activities
 - Remember as the "E" division = exercise, excitement, emergency, and embarrassment

Autonomic Functioning

- Parasympathetic housekeeping activites
 - Conserves energy
 - Maintains daily necessary body functions
 - Remember as the "D" division digestion, defecation, and diuresis

Slide 7 74h Development Aspects of the Nervous System

- The nervous system is formed during the first month of embryonic development
- Any maternal infection can have extremely harmful effects
- The hypothalamus is one of the last areas of the brain to develop

Development Aspects of the Nervous System

- No more neurons are formed after birth, but growth and maturation continues for several years (new evidence!)
- The brain reaches maximum weight as a young adult
- However, we can always grow dendrites!