Essentials of Anatomy and Physiology

MUSCULAR SYSTEM

Slide 2.1

The Muscular System

- Muscles are responsible for body movement
- Three types are found in the body
 - Skeletal muscle**
 - Cardiac muscle
 - Smooth muscle

Types of Muscle

Three types of muscle

Functions of Skeletal Muscles

- Make up "flesh" of the body
- Maintain Posture
- Voluntary movement
- Aid in breathing, eating, speech
- Provide facial expression
- Generate reflexes
- Produce body heat

Characteristics of Skeletal Muscles

- Muscle cells are elongated (muscle cell = muscle fiber)
- Muscles are specialized to contract
- Terminology:
 - Prefix myo, mys refer to muscle
 - Prefix sarco refers to flesh

Characteristics of Skeletal Muscles

- Most are attached by tendons to bones
- Cells are *multinucleate*
- Striated have visible banding
- Voluntary subject to conscious control
- Muscles and their fibers are wrapped by connective tissue

Connective Tissue Wrappings of Skeletal Muscle

Slide 6.4a

Muscle

Connective Tissue Wrappings of Skeletal Muscle

- Epimysium —– covers the entire skeletal muscle
- Fascia on the outside of the epimysium

Slide 6.4b

Skeletal Muscle Attachments

- Epimysium blends into a connective tissue attachment
 - Tendon cord-like structure
 - Aponeurosis sheet-like structure

Slide 6.5

Skeletal Muscle Attachments

• Sites of muscle attachment

- Bones
- Cartilages
- C. T. coverings
 - i.e., aponeuroses

Microscopic Anatomy of Skeletal Muscle

- Cells are multinucleate
- Nuclei are deep to the sarcolemma

Figure 6.3a

- Sarcolemma specialized plasma membrane
- Sarcoplasmic reticulum specialized smooth E.R.
 - Stores Ca++
 - Required for contraction

- Myofibril: organelle unique to muscle
 - Bundles of myofilaments
 - Myofibrils alignment produces distinct bands
 - I band = light band
 - A band = dark band

(b) Myofibril (complex organelle composed of bundles of myofilaments)

 Banding Pattern depends on arrangement of proteins in myofibrils

Fig. 7.36

- Actin: thin
 - A and I bands
- Myosin: thick
 - A bands

Sarcomere

Contractile subunit of a muscle fiber

- From "Z to Z"
 - One A band +
 - Two "half" I bands

(b) Myofibril (complex organelle composed of bundles of myofilaments)

- Organization of the sarcomere
 - Thick filaments = *myosin filaments*
 - Composed of the protein myosin
 - Has ATP-ase enzymes

Figure 6.3c

Organization of the sarcomere, con't...

Thin filaments = actin filaments

Composed of the protein actin

Figure 6.3c

- Myosin filaments have heads (extensions, or cross bridges)
- Myosin and actin overlap

(d) Myofilament structure (within one sarcomere)

 At rest, there is a bare ["H"] zone that lacks actin filaments

(d) Myofilament structure (within one sarcomere)

Properties of Skeletal Muscle

- Irritability ability to receive and respond to a stimulus
- Contractility ability to shorten when an adequate stimulus is received

Nerve Stimulus to Muscles

- Skeletal muscles require innervation
- Motor unit
 - One motor neuron +
 - Muscle cells innervated by that neuron

Nerve Stimulus to Muscles

- Neuromuscular junction:
 - communication site between a motor neuron and a muscle fiber

Nerve Stimulus to Muscles

- Synaptic cleft : gap between nerve and muscle
 - Nerve and muscle do not make direct contact

Figure 6.5b

Transmission of Nerve Impulse to Muscle

- Neurotransmitter chemical released by motor nerve
 - initiates contraction
 - Causes sarcolemma to depolarize
 - For skeletal muscle: *acetylcholine (Ach)*

Transmission of Nerve Impulse to Muscle

Fig. 7.6

- Action of Neurotransmitter
 - Crosses synaptic cleft
 - Attaches to receptors on the sarcolemma

Muscle Contraction

- An electrochemical event
 - Ach is the chemical
- Before contraction can occur, sarcolemma must be *polarized*
 - A polarized membrane is more "+" outside and more "-" inside
- Movement of ions creates "action potential"
 - The ability to do work

Muscle Contraction

- Ach attaches to receptor sites
- Sarcolemma becomes permeable to sodium (Na⁺)
- Sodium rushes into the cell
- Initiates "sliding filament" process

Muscle Contraction

- Membrane of sarcoplasmic reticulum also depolarizes
 - Ca++ ions are released
 - Bind to sites on actin
 - Open attachment sites for myosin

- Depolarization allows myosin heads to attach to binding sites on actin
 - called crossbridges
 - ATP required

www.fisiokinesiterapia.biz s

Slide 6.17a

- Actin is pulled past myosin by movement of heads
 - ATP required
- Myosin heads detach
 - ATP required
- Then bind to the next site on actin
 - ATP required

- This continued action causes a sliding of the actin along the myosin
 - I band narrows
 - H zone narrows
 - A band stays the same

- Actin slides past myosin
- Results in shortening of the sarcomere
 - Muscle fiber has thousands of sarcomeres
 - All shorten at one time
- Muscle contracts

