#### 排尿障礙治療中心 版權所有

## Physiotherapy of Lower Urinary Tract Dysfunction

## www.fisiokinesiterapia.biz

## Lower Urinary Tract Dysfunction

Urinary Incontinence Stress, urge, or mixed incontinence Frequency urgency syndrome Spastic urethral sphincter syndrome Poor relaxation of urethral sphincter Pelvic pain syndrome Chronic eliminative syndrome

## Therapeutic modalities

Medical treatment Surgical treatment Behavioral therapy Physiotherapy **Electrical stimulation Biofeedback PFMT** Neuromodulation Neurostimulation

## Functional Electrical Stimulation

- Restoration of normal physiological reflex mechanisms in abnormal nerves and muscles
- Black torpedo fish in 46 AD
- Bors (1952) electrostimulation of pelvic floor
- Caldwell (1965) anal and urinary incontinence by electrical stimulator
- Alexander & Rowan (1968) electrodes on vaginal pessary
- Suhel (1975) integrated automatic vaginal stimulator

Neuromuscular **Electrical stimulation** Excitation of peripheral nerves using short pulses, adequate intensity and duration Current amplitude (intensity) Pulse width (duration) Pulse rise time Pulse repetition rate (frequency)

## Types of Waveform



## Muscle Fatigue

- Skeletal muscle is composed of aerobic slow contracting motor units and anaerobic fast contracting units
- Resistance to fatigue is inversely correlated to aerobic oxidative capacity
- At high frequency electrical stimulation the muscle fatigues rapidly due to impaired neuromuscular transmission and sarcolemmal excitation

## Skeletal muscles

- Motor striated muscles are composed of slow, intermediate, and fast contracting muscles, fast muscle has 10-20 times more contraction force than slow fibers
- Intramural urethral sphincter small slow muscle fibers
- Periurethral pelvic floor muscles all types of muscles
- Provocative situation fast fibers of PFM action to close urethra

## **Muscle Activity**

Plasticity of metabolic and functional properties of muscles

- Following denervation, muscles lose enzymatic difference
- Immobilization induced muscle atrophy
- Disuse atrophy the muscle response is weak and rapid fatigue

## Chronic nerve stimulation

- To modify physiologic and metabolic characteristics of normal & atrophied muscles
- Transform fast to slow myosin subunits that are more fatigue resistance
- Anaerobic fast muscle turns into slow muscle with a high capacity for energy supply by aerobic oxidative process
- Increase myoglobin and mitochondria content
- Increase in capillary density

## Muscle Transformation after Nerve Stimulation

- Transformation of fast to slow twitch muscles is progressive with the duration of stimulation
- The most extensive changes occur between 60 and 90 days
- The total number of fibers remains constant
- Intermittent phasic high frequency stimulation (40 to 60 Hz) induces transformation similar to that after low-frequency (10Hz) stimulation
- The reverse process occurs by inactivity and chronic immobilization

## **Pelvic Floor Muscle Stimulation**

- Induces a reflex contraction of striated para- and periurethral muscles and a simultaneous reflex inhibition of detrusor contraction
- A sacral reflex arc and peripheral innervation must be intact
- No effect can be expected in complete lower motor neuron lesions

## Nerve Stimulation for Urethral Closure

- Direct stimulation of efferent pudendal nerves
- Activation of efferent hypogastric fibers can contract smooth urethral muscles
- Efferent stimulation of pelvic nerves can increase intraluminal urethral pressure and increase urethral length
- Stimulation of pelvic floor afferents from anogenital muscles and mucosa may activate pelvic floor muscles through reflex connection

## Nerve Stimulation for Bladder Inhibition

- A feedback system is present in micturition process
- Detrusor instability may be caused by ineffective inhibition by sphincter
- Intravaginal or pudendal nerve stimulation of sufficient intensity causes a complete bladder relaxation
- The higher intensity the more efficient bladder is inhibited via spinal reflex mechanism

## Nerve Stimulation for Bladder Relaxation

- Maximal bladder inhibition is obtained at 2x to 3x of threshold intensity
- Relaxation of detrusor is accompanied by tightening of bladder neck fibers
- Detrusor inhibition after nerve stimulation may be caused by balance between cholinergic (M2,3-receptors) and beta-adrenergic (B3receptors) neurotransmission
- After maximal stimulation, high beta-adrenergic activity and decreased cholinergic activity in rabbit detrusor strips

## Chronic Pelvic Floor Stimulation

- Chronic long-term stimulation of anal and urethral sphincters applies relatively weak electrical impulses for 3 to 12 months
- Fast motor units are recruited first
- Increase frequency of slow-twitch fibers
- Accelerated sprouting of surviving motor units of partially denervated pelvic floor muscles
- High frequency (25-50 Hz) is advised in treating stress incontinence

## Selection of Electrical Parameters

- Patient adapt to current intensity within a few minutes
- The stimulation is constructed to increase current intensity from 0 to maximum within a few minutes
- A pulse length of 0.5 to 1.0 minutes is optimal to muscle contraction
- Biphasic pulses give 30% to 40% better therapeutic response than monophasic pulses

## Selection of Frequency of Electrical Stimulation

- Maximal detrusor inhibition is obtained with a frequency of 5 Hz
- No difference in MUCP change in the range of 10- 50 Hz
- Good therapeutic results in stress and urge incontinence with a fixed frequency of 25 Hz
- Intermittent ES is superior to continuous ES to avoid muscle fatigue during long-term stimulation
- The most effective rest period is 3 times longer than active period

### Functional ES for Stress urinary incontinence Successful pelvic floor stimulation was reported in 50-92 % women with incontinence Patients without previous incontinence surgery have the best result Urodynamic parameters change little after functional ES for SUI Patients with SUI may have a better pelvic floor muscle contractility after ES that results in increased urethral resistance during stress

## Long-term electrostimulation

- At least 6 to 8 hours daily ES is needed either anally or vaginally
- A treatment period of 3 to 6 months is necessary to achieve success
- Kegel exercises should be followed after discontinuing FES to keep pelvic floor muscles in optimal condition
- Treatment combined with estrogen is recommended in menopause women
- Mechanical vaginal mucosal irritation may occur in atrophic vaginitis

## Short-term Maximal stimulation

- Intact reflex arc must be present
- Maximal ES can inhibit overactive detrusor muscle, can be an alternative in treating detrusor overactivity and urge incontinence
- 5 to10 Hz can give optimal inhibitory effect
- The current intensity is successively increased below pain level of patient
- Duration of maximal ES is 15 to25 minutes, 4 to 10 repetitions daily for 2 to 3 days

Therapeutic Results after Shortterm electrostimulation

- Successful maximal ES for pelvic floor in female urge incontinence was reported to be 52 to 92%
- A recurrence rate of 25% after discontinuing maximal ES in urge UI
- Recurrence rate of 15% within 1 year
- Success rate of 75% in recurrent urge urinary incontinence
- Repeat stimulation is needed for recurrence

## **Electrical Stimulation for SUI**

- Transvaginal ES has been used for genuine SUI, urge and mixed urinary incontinence
- Reported efficacy ranges 35 to70%
- A placebo-controlled study revealed after 15week treatment course, pad usage diminished by >50% in 62% women compared to 19% in sham device, incontinence episode reduced >50% in 48% women compared to 13% in sham device

## Transvaginal electrical stimulation

- Low frequency (20 Hz) was applied
- Contrasting data of effects on genuine SUI
- Transvaginal ES is effective in urge UI
- First line treatment for women with pure urge incontinence
- For the women with mixed type UI who does not wish to undergo PME or surgery

## Transvaginal electrical simulator



### Transvaginal electrical stimulation for Urge incontinence

- Leach reported 6% after long period of stimulation
- McGuire observed improvement in 93% women with urge incontinence
- Plevnik found 52% improved (30% cured) in pure urge incontinence
- Brubaker used 20 Hz frequency current and cured 49% with urodynamic DI
- Smith found ES reduced urine loss by 50% in 20women
- Sand reported 38% success rate in 20 women with DI

## Contraindication of ES

- Heart pacemakers
- Pregnancy women
- Urethral obstruction and overflow incontinence
- Complete peripheral denervation
- Urinary tract infection
- Uterine prolapse or high grade cystocele
- Low compliance and cooperation of patient

## Biofeedback

- Detectable or measurable response: bladder pressure or pelvic floor muscle activity
- A detectable response
- A perceptible cue : sensation of urge or tightness
- Active involvement of a motivated patient

## **Biofeedback for LUTD**

- Fail to inhibit detrusor contraction
- Fail to adequately contract striated urethral sphincter of the pelvic floor
- Failed to relax the urethral sphincter or pelvic floor muscles during micturition
- Chronic pelvic pain due to hypertonicity of pelvic floor muscles

## Cystometry biofeedback for urge incontinence

- For women who failed electrical stimulation, were intolerant to anticholinergics,
- Urodynamic detrusor overactivity was proven
- Performed several voluntary PFMC at episodes of DI while watching CMG tracing and EMG activity
- Try to inhibit urge incontinence as longer duration as possible at home

## Bladder biofeedback

- Train patients to inhibit detrusor contraction voluntarily and to contract periurethral muscles selectively
- Bladder pressure biofeedback to treat urge incontinence by watching intravesical pressure rise during CMG
- 81% improvement rate was reported and 36% success rate at 5 year follow-up

# Detrusor overactivity and CMG biofeedback



# Biofeedback to inhibit detrusor instability



## Pelvic Floor Muscle Biofeedback

- Vaginal manometry by perineometry Kegel reported a 90% improvement rate
   Vaginal electromyography – in 8 week program 80% younger and 67% older group reported no more incontinence
- Anal sphincter biofeedback by perineal surface EMG or rectal probe



### 陰道壓力儀



## Pelvic floor hypertonicity & overactivity

#### Etiology

- Persistence of a reaction phase to noxious stimulus of LUTS (e.g. inflammation, infection, irritation, post-surgery)
- Iearned dysfunctional voiding behavior
- Persistent transitional phase in the development of micturition control
- Sexual abuse

## **Clinical presentation**

Dysfunctional voiding

Increased pelvic floor activity during voiding Urgency frequency, poor stream, intermittency, hesitancy

- Urinary retention
- Constipation
- Pelvic or perianal pain
   Certain pelvic pain (e.g. interstitial cystitis, prostatodynia, urethral syndrome) is associated with pelvic floor hypertonicity

-diet regulation
-drinking and voiding
chart
-pharmacotherapy

-incontinence
 -reflux
 -mucosal ischaemia

Bladder dysfunction

Pelvic floor dysfunction Overtraining of the pelvic floor muscles

Biofeedback electrical stimulation manual technique

n 中 -residual urine -pelvic pain 排尿障礙治療中心 版權所有

## Aims of physical therapy

- To improve dietary and micturition routine
- To improve proprioception and body awareness of PF: focus on relaxing the PF and voluntary sphincter control
- To decrease any associated hypertonicity or pain in the PF
- To optimize functional use of PF

## **Evaluation**

#### A complete history

- Frequency /volume chart for 3 days
- Neurological examination (lower quarter)
  - proprioception, sensation
  - Peripheral reflexes
- Physical examination
  - PF function: Rectal /vaginal tone, contractility, endurance, ability to contract and relax PF voluntarily, relation between PF & adjacent pelvic viscera
    - pelvic pain: trigger point, tenderness
    - Sacroiliac & coccygeal position /mobility

## **Behavioral modification**

- Instruction on urinary system and PF dysfunction
- Diet: avoid bladder stimulants, high fiber adequate daily intake of water
- General recommendations for changing wrong voiding behavior

take time for micturition, do not push

Instruct a proper toilet posture:

sit for voiding every time (men also) no straining <u>timed voiding (3 1/2~4 hours)</u>

## Manual technique

- To restore sacroiliac & sacrococcygeal alignment
- To improve proprioceptive awareness
- Muscle energy technique
- Proprioceptive technique: direct pressure, tapping, use of stretch reflex
- To decrease tension and promote relaxation of the musculature
- Massage
- Trigger point pressure
- Myofascial release



### Clinical effectiveness

#### Standford CA

internal myofascial release, 18 sessions
↓hypertonus & ↓pain in type III chronic prostatitis
Jerome MW
myofascial release, 8-12 weeks
83% urgency-frequency syndrome
symptom relief & ↓hypertonus
70% interstitial cystitis

## Pelvic floor exercise (PME) with EMG biofeedback

Convert pelvic floor/urethral sphincter activity into visual or auditory signal

Goal:

- to help identify pelvic floor musculature
- to perceive difference between contraction, relaxation, and straining
- to voluntary relax & control pelvic floor

## EMG biofeedback: children with dysfunctional voiding

- Anal plug or surface electrode on perineal skin
- Protocol:

a short submaximal contraction (3 sec)
→ a prolonged relaxation (30 sec)
for 30 times with diaphragmatic breathing
progress:
increase holding time (10 s) followed by

prolonged relaxation (30 s)

## PME with EMG biofeedback

- Intravaginal/ intra-anal EMG sensor
- Glazer Protocol

- 1. One minute rest, pre baseline
- 2. Five rapid contraction (flicks) with 10-s rest between each
- 3. Five 10-s contractions with 10-s rest between each (tonic)
- 4. A single endurance contraction of 60-s
- 5. One minute rest, post baseline



#### 劉xx,40y/o for PME training first time

![](_page_48_Figure_1.jpeg)

#### 劉xx,40y/o for PME training 3month

![](_page_49_Figure_1.jpeg)

Home program: 5-s contraction/10-s relaxation 60 repetitions twice daily progress to 10-s contraction/10-s relaxation **Functional application** in corresponding situation during daily life practice in different posture practice relaxation during voiding  $\bigcirc$ anticipate urge situation by lacksquaresubmaximal PF contraction **EMG + uroflowmetry Cystometric biofeedback : cyclic filling** 

## **Clinical effect**

## For dyfunctional voiding

- 51-83% improve for the long term follow up
- normal flow curve & good pelvic floor relaxation
- no significant residual urine
- improve constipation
- decrease occurrences of UTI
- For pelvic pain
  - 43-100% pain relief in levator syndrome
  - 83% pain relief in vulvovaginal pain 排尿障礙治療中心 版權所有

**Additional treatment for** other urological symptoms Detrusor instability: anticholinergic drugs Recurrent UTI: antibiotics Chronic constipation regulation of diet bowel training drug therapy \* Neuman et al: UTIs were largely resolved after treating obstipation 排尿障礙治療中心 版權所有

## Important factors for success

Motivation and cooperation Appropriate selection of patients intact nervous system Biofeedback training (Deindal et al): Improvement in women with inappropriate pubococcygeal activity Not in those with urethral sphincter repetitive discharge 排尿障礙治療中心 版權所有

# Other Non-surgical Therapies for Incontinence

- Vaginal cones are a method of biofeedback
- 70% (19/27) with mild SUI had complete or >50% improvement after vaginal cone therapy, 7/50 with severe SUI had similar success rate
- Electrostimulation of pudendal nerve (prolonged pudendal nerve conduction velocity in 97% SUI) is effective in 62% with SUI and 20% were dry
- Electromagnetic stimulation

### Multiple purposes Electrostimulator and Biofeedback

![](_page_55_Picture_1.jpeg)

## Patient visualization & biofeedback

![](_page_56_Picture_1.jpeg)

## **Clinical effect**

Magnus et al: interstitial cystitis, 54% benefit from suprapubic TENS Park et al: Prostatodynia, 20Hz, anal plug,  $\downarrow$  pain and  $\downarrow$  muscle spasm in 18 sessions Walsh et al: irritative voiding syndrome, 1 week  $\downarrow$  urinary symptom temporally 100% relapse within 6 months Effectiveness depend on frequent, ongoing 排尿障礙治療中心 版權所有 treatment

## Electrogalvanic stimulation for levator ani spasm A high voltage direct current (80-120Hz) Possible mechanism high frequency nerve stimulation induce tentanic and fatique of levator ani

Clinical result:
 Rectal probe, high voltage galvanic stimulation, 80 or 120 cps, 1 h

90% relieve symptoms

break the spasm-pain

high relapse rate in 6 months

## **Combination therapy**

Behavioral modification
Manual technique
Biofeedback
Electrical stimulation
Pharmacotherapy

Electrostimulation and electromodulation for NVD Detrusor contractility reduces during electrostimulation of pelvic floor Detrusor overactivity — Sacral neuromodulation, Surface sacral electromagnetic current stimulation Detrusor underactivity – Sacral nerve or Intravesical neurostimulation

## **Electrical stimulation**

 5-20Hz, 210µs, low level intensity
 Intravaginal/ intranal electrode transcutaneous electrodes: sacral dermatome:

 sacral, suprapubic, common peroneal, posterior tibial nerves

mechanism of action

Large skin afferents suppress spontaneous reflex activity within the dermatome

## Implantation of Sacral Stimulator

![](_page_62_Picture_1.jpeg)

![](_page_62_Picture_2.jpeg)

## Correct placement of electrode on Sacral nerves

![](_page_63_Figure_1.jpeg)