Selected Fractures of the Foot: Diagnosis and Treatment
Overview

- **Forefoot Fractures**
 - Lisfranc
 - MT
 - 5th MT

- **Hindfoot Fractures**
 - Calcaneus
 - Talus
Tarsometatarsal (Lisfranc’s) Fracture Dislocation

- Injury to Lisfranc complex can result in prolonged recovery, significant morbidity
- Important to recognize and treat early
 - 20% initially unrecognized
- Significant disruption can undergo spontaneous reduction
 - Masks underlying gross instability
 - Need high index of suspicion especially with high energy injuries (ex. MVA)
Lisfranc’s: Anatomy

- No ligament between bases of 1st and 2nd metatarsals
- Lisfranc’s ligament:
 - oblique attachment between medial cuneiform and 2nd MT base
 - Plantar structure
Lisfranc’s: Mechanism

- Sports, fall from height, MVA
- Longitudinal loading of plantarflexed foot
- Hyperplantarflexion:
 - Dorsal ligaments rupture first
 - Plantar ligaments next, depending on amount of force
 - Variable bony injury (cuneiform, cuboid, MT fx’s common)

Direct mechanism

Indirect mechanism (more common)
Lisfranc’s:
Diagnosis

• Careful physical exam
 - Pain anywhere in TMT joint suggestive
 - Plantar ecchymosis

• Radiology
 - Weight bearing x-rays:
 • AP
 • Lateral
 • 30deg medial oblique
Lisfranc’s:
Diagnosis

- **AP**
 - Lateral borders of 1st MT and medial cuneiform
 - Medial borders of 2nd MT and middle cuneiform
- **Oblique**
 - Medial borders of 4th MT and cuboid
- **Lateral**
 - Dorsum of 2nd MT and middle cuneiform
- **2nd MT on AP & 4th MT on oblique are most consistent indicators of unstable injury**
Lisfranc’s:
Diagnosis

Non-weight bearing

Weight bearing
Lisfranc’s: Diagnosis

Oblique
Lisfranc’s:
Diagnosis

• **X-rays negative, but high suspicion:**
 - **Flouroscopic stress views**
 • Anesthesia (ankle block)
 • Hold hindfoot stable, supinate/pronate & adduct/abduct stress forefoot on AP and oblique views

• **CT**
 - To evaluate for intraarticular comminution
 - Preoperative planning
Lisfranc’s: Classification

- Quenu and Kuss
- 3 types based on resulting pattern
- Poor for determining treatment or predicting outcome

Homolateral (med or lat) Partial disruption (1st or lesser)
Lisfranc’s:
Treatment

• Stable Lisfranc “sprains”:
 - TMT pain with ROM/weight bearing/and palpation, but no instability
 - <2mm displacement of TMT joint on any view
 - Need immobilization
 • Short leg cast
 • Stress views at 10 days
 • NWB for 3-4 weeks, advance as comfort allows
 - Start rehab when pt able to heel raise out of cast without pain
Lisfranc’s: Treatment

• **Unstable Lisfranc injury**
 - >2mm displacement at TMT joint
 - Best results with anatomic ORIF
 - Closed reduction and splinting until surgery possible
Lisfranc’s:
Treatment

- **Surgical technique**
 - 2 incisions
 - 1-2 interspace
 - Identify NV bundle & fix medial 2 TMT joints
 - Over 4th MT
 - Fix lateral 3 TMT joints
 - Inspect all joints prior to reduction
 - K-wires vs. screws
Lisfranc’s: Treatment

- Clamp reduction of 2nd TMT joint
- Order of fixation
 - 2nd TMT (screw)
 - Assess instability
 - 3rd TMT (screw)
 - 1st TMT (screw)
 - Notch to prevent fx
 - Lateral joints (wires)
Lisfranc’s:
Post-op Care

- NWB in short leg cast 6-8 weeks
- Progress to WB as comfort allows
- Out of cast when pain free
- HW removal at 3-6 months
Metatarsal Fractures

- **5th MT fractures**
 - Unlike other MT fractures, usually indirect injury
 - Usually related to athletic activity
 - 2 types:
 - Proximal base fractures
 - Zones 1, 2, 3
 - Distal spiral fractures
 - “dancers fracture”
5th Metatarsal Fractures: Proximal Base Fractures

- **Zone 1 injury**
 - Avulsion fracture
 - Hindfoot inversion while weight on lateral MT
 - Lateral band of plantar aponeurosis pulls bone off (not peroneus brevis)
 - Usually min displaced and stable
5th Metatarsal Fractures: Proximal Base Fractures

• Zone 2 Injury
 - True Jones’ fracture
 - Acute forefoot adduction
 - Metaphysyeal/diaphyseal junction
5th Metatarsal Fractures: Proximal Base Fractures

- **Zone 3 Injury**
 - Proximal 1.5cm of diaphyseal shaft
 - Stress fracture from repetitive loads
 - Fx starts lat and propagates med
 - Athlete with weeks/months of lateral pain
5th Metatarsal Fractures: Distal Spiral Fractures

- Spiral oblique fractures
- "Dancer’s fracture"
- Distal lateral to proximal medial
- Mechanism: rotational force to an axially loaded foot in plantarflexed position
5th Metatarsal Fractures:
Treatment

• **Zone 1:**
 - Treat symptomatically
 - Hard soled shoe and walking casts equally effective
 - May have 6-8 weeks of symptoms
 - Expect full healing
Zone 2
- Controversial
- If preexisting sx:
 - Less healing potential
 - Treat like zone 3
- If acute:
 - Short leg walking cast 8-10 weeks, WBAT
5th Metatarsal Fractures: Treatment

• Zone 3
 - Tendency to non-union
 • Watershed area of blood supply?
 • Medial nutrient artery feeding proximally
 - Requires more aggressive Tx
 • SLC non-weightbearing up to 3 months
 • Some initially ORIF with compression and graft
5th Metatarsal Fractures: Treatment

- **Surgery**
 - Reserved for symptomatic nonunions usually in zone 3
 - Open debridement of nonunion & cancellous bone grafting, fill canal with compression screw (4.5 or 6.5 partial thread)
 - Approach risks: sural N., PB, DQ
 - Post-op: protected weight bearing
Calcaneus Fractures

• Most common of all tarsal bone fractures
• Very challenging injuries
• Wide variety of fracture patterns
• Once considered “inoperable”
 - New surgical technique, CT has made intervention more beneficial
Calcaneus Fractures: Anatomy

- “like an egg”: hard on outside, soft on inside
- Function: 1) lever arm for gastroc, 2) bear body weight, 3) maintain foot (lat column) length
- Anatomic keys:
 - Posterior facet
 - Sustentaculum tali
 - Bohler’s tuber angle (calcaneal height)
 - Gissane’s crucial angle (post facet depression)
Calcaneal Fractures: Anatomy

- Body
- Posterior articular surface for talus (posterior facet)
- Middle articular surface for talus (middle facet)
- Anterior articular surface for talus (anterior facet)
- Anterior process
- Articular surface for cuboid bone
- Tuberosity
- Lateral process of tuberosity
- Peroneal trochlea
- Groove for peroneus longus tendon
Calcaneal Fractures: Anatomy

- Middle articular surface for talus (middle facet)
- Posterior articular surface for talus (posterior facet)
- Articular surface for cuboid bone
- Sustentaculum tali
- Groove for flexor hallucis longus tendon
- Tuberosity
- Media process of tuberosity
Calcaneal Fractures: Anatomy

Normal values:
Bohler=25-40 deg
Gissane=100 deg
Calcaneal Fractures:
CT Anatomy

- Anterior articular surface for talus (anterior facet)
- Middle articular surface for talus (middle facet)
- Sustenaculum tali
- Articular surface for cuboid bone
- Posterior articular surface for talus (posterior facet)
- Peroneal trochlea
- Body
- Tuberosity
Calcaneal Fractures: CT Anatomy

- Middle articular surface (middle facet)
- Posterior articular surface (posterior facet)
- Sustentaculum tali
- Groove for flexor hallucis longus tendon
- Medial process of tuberosity
- Peroneal trochlea
- Tuberosity
- Lateral process of tuberosity
Calcaneal Fractures: CT Anatomy

- Tibia
- Medial malleolus
- Talus
- Lateral malleolus
- Posterior facet of calcaneus
- Subfibular space
- Body of calcaneus
Calcaneus Fractures:
Types

- **Extraarticular**
 - Anterior process
 - Body
- **Intraarticular**
 - Subtalar joint
 - Posterior facet
 - Anterior facet
 - Middle facet
 - Posterior facet
 - Posterior tuberosity
Calcaneus Fractures: Evaluation

• High energy injury, often polytrauma (femur, spine fx’s)

• Radiographs:
 – AP of hindfoot
 • Calcaneocuboid extension?
 – Lateral
 • Subtalar joint?
 – Harris (calcaneal) view
 • widening, loss of height, intraarticular extent?
 – Broden’s (posterior facet) view
 – Normal side comparison
Calcaneus Fractures: Evaluation

- **Computerized Tomography**
 - Routine for any possible surgical candidates
 - Supine, knees flexed, feet plantigrade
 - Feet well aligned for comparison
 - Axial cuts, coronal cuts, sagittal reconstruction
Calcaneus Fractures: Extraarticular

- Don’t involve posterior facet
- 25-30% of all calcaneus fractures
- Mechanism:
 - Lower energy
 - Heel inverted at impact?
- More benign course with better outcome than intraarticular
Calcaneus Fractures: Extraarticular

- **Anterior process**
 - Forced inversion
 - Avulsion or compression
 - Best seen on oblique view
 - Cam walker or cast, WBAT 4-6 weeks
 - Consider ORIF if >25% articular surface
Calcaneus Fractures:
Extraarticular

• **Body Fracture**
 - Distortion of architecture can affect articular surfaces
 - NWB or TTWB for 4-6 weeks
 - ORIF for loss of height or heel widening
Calcaneus Fractures: Extraarticular

- **Sustentaculum Tali**
 - Isolated fx = rare
 - Pain with PROM of FHL
 - Non-displaced
 - Protected WB 6-8 weeks
 - Displaced
 - Reduce by inversion/ plantar flexion and direct pressure
 - ORIF for large displaced fragment, excise if comminuted
Calcaneus Fractures: Extraarticular

• Posterior tuberosity
 - Avulsion by triceps surae or direct blow
 - Positive Thompson test
 - CRPP or screw if fx displace
 • Plantar flexion and bone tenaculum
 • 7.3mm cannulated screw
 • 6-8 weeks casting in equinus
 • Watch for skin complications
Calcaneus Fractures: Extraarticular
Calcaneus Fractures: Intraarticular

- 75% of all calcaneus fractures
- Usually fall from height
- Heel everted at time of injury
- Massive swelling
 - Compartment syndromes in 10%
 - Skin complications
- 50% have associated injuries
 - T&L Spine 10%, bilateral 5%, open fx (medial) 5%,
Calcaneus Fractures: Intraarticular

• **Classification**
 - 2 major fragments
 - Sustentacular (“constant”) fragment
 - Tuberosity fragment (more variable)
 - **Radiographs**
 - Essex-Lopresti 1952 described 2 types
 - Tongue
 - Joint depression (more common)
 - **CT**
 - Sanders classification
Calcaneus Fractures: Joint depression type
Calcaneus Fractures:
Joint depression type

Medial sustentacular fragment remains with talus
Remainder of body shifts into varus & laterally displaced
Calcaneus Fractures: Tongue type
Calcaneus Fractures:
Sanders CT classification

Type = number of intraarticular fragments
Type 1 = non or minimally displaced
Calcaneus Fractures: Treatment

• Closed treatment
 - Indications diminishing
 - Non-displaced fx’s, poor surgical candidates
 - Compressive splint for 5-10 days
 - Removable boot
 • Check skin, start ROM
 - NWB for 6 weeks, then advance slowly
Calcaneus Fractures: Treatment

- **Semiopen techniques**
 - **Bohler**
 - Tranverse traction pin and plaster
 - **Essex-Lopresti**
 - Tongue type fractures
 - Steinman pin used to reduce fracture, then advance for fixation, plaster
 - Evidence of poor outcomes with poor reduction of articular surface, semiopen techniques less useful
Calcaneus Fractures: Treatment

- ORIF
 - Thordarson & Kriegler (1996): prospective randomized trial ORIF vs non-op for intraarticular fx = clear advantage to ORIF
 - Extensile lateral approach most common
 - “L” incision
 - Peel flap directly off bone to maintain blood supply
 - Release calcaneofibular ligament, allow peroneal tendons to sublux over fibula, better exposure
Calcaneus Fractures: Treatment
Calcaneus Fractures: Treatment

• **Timing of surgery**
 - Positive “wrinkle test”
 - Edematous skin heals poorly
 - ORIF within first 24hrs or wait 1-3 weeks
Calcaneus Fractures: Treatment

• **ORIF technique**
 - Goals
 • 1) Reduction/fixation of posterior facet
 • 2) Correct loss of height/increased width
 • 3) Fix calcaneocuboid, ant/mid facet fx’s
Calcaneus Fractures: Treatment

• ORIF technique
 - Sloppy lateral
 - Prep iliac crest for bone graft
 - Explore sural N., retract with flap
 - K-wires for retraction
 - Usually need to remove lateral fragments to evaluate and reduce facet
 - Temporary K-wire fixation
 - Parallel screws, plate fixation
Calcaneus Fractures: Treatment

Broden’s view
Calcaneus Fractures

• Post operative care
 - Initial compressive short leg splint 10-14 days
 • Change at 48 hrs if wound healing concerns
 - Short leg, removable boot at 2 weeks
 - Start active ROM if wound OK
 - NWB for 6 weeks, then progress slowly
Calcaneus Fractures

- **Complications**
 - Gravity related swelling
 - Put on low compression hose in AM after 20-30min elevation
 - Skin and wound healing problems
 - Compartment syndrome
 - RSD
 - Sural N. injury
Talus Fractures

- 2nd most common tarsal fracture
- Tenuous blood supply
- 3/5 covered by articular cartilage
 - Articulations allow 90\% foot & ankle motion
- No musculotendinous origins/insertions
Talus Fractures

- Talar neck
- Posterior process
- Lateral process
- Os trigonum
 - In 50% of normal feet, posterior to lateral tubercle
Talus Fractures

• **Blood supply**
 - Abundant cartilage, lack of muscle attachments limits blood supply
 - Vessels enter with ligamentous & capsular attachments
 • With injury these vessels often injured
 • High incidence of AVN
 - Anastomotic sling enters inferior talar neck
 • Artery of sinus tarsi, artery of tarsal canal
 • Peroneal, DP, and Post Tib arteries contribute
Talus Fractures

- Neck fractures
- Body fractures
- Process fractures
- Head fractures
Talus Fractures

- **Neck fractures**
 - MVA or fall from heights
 - Hyperdorsiflexion of foot on leg
 - Degree of displacement directly related to rate of AVN

- **Hawkins classification:**
 - Types I, II, III correlating to progressive displacement
 - Rare Type IV = Type III with head dislocated
Talus Fractures

Type I: non-displaced fracture
Talus Fractures

Type II: displaced fractures with subluxation/dislocation of subtalar joint
Talus Fractures

Type III: displaced fracture with dislocation of subtalar and ankle joints
Talus Fractures

• Associated injuries
 - 64% of talar neck fx’s associated with another fracture
 - High association with medial maleolus fractures (19-28%)
 - Calcaneus fractures (10%)
Talus Fractures

• **Evaluation**
 - **Radiographs**
 • AP, Lat, Mortisse
 • 75 deg AP with 15 deg pronation
 - Shows entire neck
Talus Fractures

- Treatment
 - Best results with prompt, perfect anatomic reduction
Talus Fractures

- **Type I fractures:**
 - Must be truly non-displaced
 - Short leg cast for 8-12 weeks
 - First 6 weeks NWB
Talus Fractures

• **Type II fractures:**
 - Displacement can tent skin, needs prompt reduction
 - **Closed reduction**
 - Traction, plantar flexion of foot, varus/valgus correction
 - If anatomic, SLC NWB in equinus for 6 weeks
 - Check reduction at 2, 4, & 6 weeks
 - NWB for 3 months
 - Can also percutaneously screw (post lat to ant med)
 - **ORIF if not anatomic**
Talus Fractures

- **Type III fractures:**
 - All require prompt ORIF
 - Anteromedial approach
 - Transverse calcaneal traction pin for manipulation
 - Medial maleolus osteotomy may be necessary to reduce difficult dislocations
 - Do not reflect deltoid ligament off of talus, it may be only remaining blood supply
Talus Fractures

• ORIF
 - Cancellous screws
 - May need DPC due to swelling
 - SLC NWB for 3 months
Talus Fractures

• Complications
 - Skin necrosis
 - Infection
 • Especially with open injuries
 - Historically was an indication for BKA
 - Delay closure
 • Infection persists, talar body becomes large sequestrum
 - Delayed union (common)
 - Non-union (rare)
 - Malunion (usually varus) with painful gait
Talus Fractures

- **Complications**
 - **Osteonecrosis**
 - #1 complication
 - Type I: 0-13%, Type II: 20-50%, Type III: 83-100%
 - Radiographic diagnosis
 - Increased density, later collapse
 - Hawkin’s sign:
 - 6-8 weeks post fx
 - Subchondral atrophy in dome of talus
 - Indicates vascularity/viability
 - May require MRI for confirmation
Talus Fractures

- If atrophy not present, don’t alter treatment
 - 1st goal = union, will occur with AVN
- Symptomatic AVN with collapse:
 - Tibiotalarcalcaneal arthrodesis with IM fixation

Hawkin’s Sign
Talus Fractures

- **OCD fracture of talar dome**
 - Twisting, shearing injury
 - Vary in size
 - High index of suspicion
 - Can cause persistent pain after ankle sprain/fx
 - Treat aggressively
 - Debride small lesions
 - ORIF larger (>1cm) lesions with underlying bone
Talus Fractures:
OCD of talar dome
Talus Fractures

- **Process fractures**
 - rare

- **Talar body crush fx**
 - High complication/AVN rate
 - Usually displaced
 - ORIF recommended
 - NWB until union