PEDIATRIC CERVICAL SPINE DEFORMITY

www.fisiokinesiterapia.biz
DEVELOPMENT

- EACH VERTEBRAE DEVELOP FROM THE CAUDAL AND CRANIAL ½ OF 2 SCLEROTOMES
 - C1 and C2 primitive centrum fuse to form odontoid process

- ATLAS
 - Body ossifies at 6-24 mos
 - Arch closure (final canal diameter) at 6-7 yo
 - Further growth by periosteal appositional growth only (external, no canal change)
DEVELOPMENT

• AXIS
 – ODONTOID
 • 2 PRIMARY OSSIFICATION CENTERS
 – Coalesce by 3 mos
 – Separated from C2 by dentocentral synchondrosis
 🌟 Gradually closes btwn 3-6yo
 • TIP BECOMES AN APOPHYSIS
 – Chondrum terminale
 – Begins ossifying 5-8yo
 – Fuses at 10-13yo
 – NEURAL ARCHES CLOSED BY 6-7 YRS
 • Similar to atlas, no increase in canal size after this point
DEVELOPMENT

• C 3-7
 - 3 OSSIF. CTNS @ BIRTH
 • 1 BODY, 2 ARCHES
 • POST SYNCHONDROSIS CLOSES @ 2 YRS
 - FACETS START
 HORIZONTAL, BECOME VERTICAL WITH GROWTH
DEVELOPMENT

• C 3-7
 – BODY GROWTH
 • VERTICAL – ENCHONDRAL OSSIFICATION
 • CIRCUMFERENTIAL – PERIOSTEAL APPOSITION
RADIOGRAPHIC PARAMETERS

- WHAT IS PATHOLOGIC IN AN ADULT CAN BE NORMAL IN A GROWING CHILD
 - ADI
 - SAC
 - PSEUDOSUBLUXATION C 1-2
 - OS-ODONTOIDUM
 - GROWTH CENTERS ARE NOT FRACTURES
RADIOGRAPHIC PARAMETERS

• ADI (ATLANTO-DENS INTERVAL)
 - Measure on lateral flex/ext films,
 voluntary motion in awake patient

• ANT ASPECT OF DENS TO THE POST ASPECT OF THE ANT RING OF THE ATLAS ON BOTH FILMS
 - NL: < 5mm kids,
 <3mm adults
RADIOGRAPHIC PARAMETERS

• Anterior arch of atlas can override odontoid on extension in 20% of kids

• Why ADI increase in kids?
 – ↑ ligamentous laxity
 – ↑ cartilage component of dens and atlas
RADIOGRAPHIC PARAMETERS

• SAC (SPACE AVAILABLE FOR THE CORD)
 - POST ASPECT OF DENS TO ANT ASPECT OF POST RING OF ATLAS
 - >13 mm in adults and teens
 - Need at least the diameter of the odontoid available
RADIOGRAPHIC PARAMETERS

- **SAC**
 - Steel’s rule of thirds
 - 1/3 cord
 - 1/3 odontoid
 - 1/3 space available (“safe zone”)
 - ATTENUATION OF TRANSVERSE ATLANTAL LIG LEAVES ONLY THE ALAR LIG (i.e. TRISOMY)
 - ALAR LIG ALONE CANNOT PROTECT FROM SCI WITH EVEN MILD TRAUMA
COMMON NORMAL VARIANTS

• Absence of cervical lordosis
 - Mimics splinting of injury
• Pseudosubluxation
• C1 multiple ossification centers/ spina bifida
 - Can mimic fx
 - Look for smooth cortical margins
 - Lack hematoma on CT
• Spina bifida occulta
• C2 dentocentral synchondrosis
 - CLOSES BY 11 YEARS
• Anterior wedging of C3 seen in 7%
PSEUDOSUBLUXATION

- **ANT DISPLACE OF C2 ON C3**
 - C 3-4 less common
 - 9% of kids 1-7 yo
 - Posterior line of Swischuk
 - Line from ant aspect of C1 posterior arch to same on C3
 - Should be within 1 mm of same of C2
 - >2 mm = pathologic
 - **CAUSES**
 - Horizontal facets
 - Esp. in upper
 - ↑ RELATIVE HEAD SIZE
 - ↑ LIG LAXITY
PSEUDOSUBLUXATION

• **ANT DISPLACE OF C2 ON C3**
 - **CAUSES**
 - Horizontal facets
 - Esp. in upper C spine
 - Change from 30deg to 70deg during growth
 - Large relative head size
 - General ligamentous laxity
 - **Treatment**
 - Do nothing
OS ODONTOIIDUM

• TIP OF ODONTOID IS DIVIDED
 - Apical segment lacks basilar support

• VERY RARE

• X-RAY – oval ossicle, smooth margins

• CAUSES ?
 - Old fx non-union
 • MRI’s have shown cord changes c/w trauma
 - AVN
 - Congenital anomaly
OS ODONTOIDUM

• SYMPTOMS
 - NECK PAIN
 - VERT ART OCLUSION (C1-2 MOTION)
 • SYNCOPE, VERTIGO, N/V, VISUAL DEFECITS
 - NEURO SXS (RARE)
 • Posterior translation of os into cord
 • Transient paresis, myelopathy, paralysis
 • SUDDEN DEATH
OS ODONTOIDIUM

• TREATMENT

 – SURGERY (C1-2 PSA, INST, HALO)
 • ADI > 10 mm
 • SAC ≤ 13mm
 • NEUROLOGIC SX
 • PERSISTANT PAIN
 • PROGRESSIVE INSTABILITY
TORTICOLLIS

- Combined head tilt and rotatory deformity
- Indicates C1-2 problem
 - 50% rotation in C-spine at this joint
- Large differential diagnosis
 - Osseous vs. nonosseous
TORTI COLLIS

- DIFFERENTIAL DIAGNOSES
 - MUSCULAR (82%)
 - ATLANTO-AXIAL ROTATORY SUBLUXATION
 - CNS LESION
 - BIRTH TRAUMA
 - CONGENITAL SPINE DEFORMITY
 - KLIPPEL-FEIL
 - OCCIPITO-CERVICAL SYNOSTOSIS
 - GOLDENHAR SYND
 - HEMI ATLAS
 - BASILAR IMPRESSION
 - ODONTOID ANOMALY (OS ODONTOID DI UM)
CONGENITAL MUSCULAR TORTICOLLIS

- 82% OF ALL TORTICOLLIS
 - 75% right sided
 - 8-20% also have DDH
- CONGENITAL CONSTRICITION OF SCM
- HEAD TILT WITH ROTATION OPPOSITE TILT
- FAMILIAR COMPONENT
CONGENITAL MUSCULAR TORTI COLLIS

- CAUSE UNKNOWN
 - INTRAUTERINE SCM COMPARTMENT SYNDROME FROM NECK COMPRESSION
 - SCM VENUS OCCLUSION ON HISTOPATHOLOGY
 - MYOFIBROSIS → CONTRACTION
 - NEUROLOGIC
 - Spinal accessory N. injury
 - FETAL POSITION
 - EMBRYOLOGIC
 - BIRTH TRAUMA
CONGENITAL MUSCULAR TORTICOLLIS

• PLAGYCEPHALY
 - Flattening of head on side of contracture
 - Due to sleeping position (prone in U.S.)
 - Untreated: eye/ear levels become unequal

• X- RAYS
 - Always normal in congenital muscular torticollis
 - Check hips

• RARELY A TREATABLE NEUROLOGIC CAUSE
 • SYRINX, SPINAL CORD TUMOR, CHIARI, POST FOSSA TUMOR, OCULAR PATHOLOGY (involuntary head tilt)
CONGENITAL MUSCULAR TORTICOLLIS

• TREATMENT
 - 90% RESOLVE WITHOUT SURGERY
 • STRETCHING, PT
 • Crib toy modification
 - After 1yo, stretching usually unsuccessful
 - SURGERY: GOOD RESULTS UP TO 12 YO
 • UNIPOLAR RELEASE
 • BI-POLAR RELEASE
 - Z-LENGTHENING OF STERNAL INSERTION MAINTAINS NECK CONTOUR
 • MID-SCM TRANSECTION
 - MINERVA BRACE FOR 6-12 WEEKS
CONGENITAL MUSCULAR TORTICOLLIS

• TREATMENT
 - FACIAL ASSYMMETRY CORRECTION RELATIVE TO GROWTH REMAINING AT TIME OF CORRECTION (REMODELING)
 - BEST SURGERY TIME BETWEEN 1 AND 4YO
ATLANTO-AXIAL ROTARY SUBLUXATION

• COMMON PROBLEM
• RANGE- MILD SUBLUX TO COMPLETE DISLOCATION
• X-RAY: difficult to assess
 • LAT MASS OF C1 Shifts anteri orly, appears wider than the narrower, more post displaced opposite lat mass
 • posteri or arches don’t superimpose due to head tilt
 • can be NL child with rotated head
 • CT with left and right rotation will demonstrate it
 - C1/O Donto id relationship is constant in a fixed deformity
ATLANTO-AXIAL ROTARY SUBLUXATION

• 4 TYPES:
 - I) ROTATORY DISPLACEMENT, NO ANTERIOR SHIFT (most common)
 • RESOLVES SPONTANEOUSLY
 - II) ROT DISPLACEMENT, WITH < 5mm ANTERIOR SHIFT
 • NOTED ON FLEX/EXT X-RAYS (ADI)
 - III) ROT DISPLACEMENT, > 5mm ANTERIOR SHIFT (very rare)
 • HIGH RISK OF PARALYSIS/DEATH
 - IV) ROT DISPLACEMENT, POST SHIFT (very rare)
 • HIGH RISK OF PARALYSIS/DEATH
ATLANTO-AXIAL ROTARY SUBLUXATION

• ETIOLOGY
 – MINOR TRAUMA
 • MOST COMMON
 – FRACTURE
 – FOLLOWING ENT SURGERY
 – FOLLOWING URI
ATLANTO-AXIAL ROTARY SUBLUXATION

• PRESENTATION
 - ACUTE TORTICOLLIS
 - PAIN WITH NECK ROM
 • Long SCM painful due to resisting deformity
 - PLAGYCEPHALY SEEN IN LONG-STANDING CASES
ATLANTO-AXIAL ROTARY SUBLUXATION

• GRISEL SYNDROME
 - SPONTANEOUS ATLANTO-AXIAL SUBLUX FOLLOWING URI, OR ENT SURG (T/A)
 - DIRECT CONNECTION BETWEEN PERIDONTAL VENOUS PLEXUS AND SUBOCcipital Epidural Sinuses
 • TRANSPORTS SEPTIC EXUDATES CAUSING ATLANTO-AXIAL HYPEREMIA
 - TEMPORARY LIGAMENTOUS LAXITY
 - SUBLUXATION
 - CHILDREN’S FACETS MORE HORIZONTAL
 • FACETS HAVE MENISCUS-LIKE SYNOVIAL POCKETS → CAN BE TRAPPED
 - USUALLY RESOLVES SPONTANEOUSLY
ATLANTO-AXIAL ROTARY SUBLUXATION

• TREATMENT
 – < 1 WEEK OF SYMPTOMS
 • SOFT COLLAR FOR COMFORT, REST
 • IF NO REDUCTION: HALTER TRACTION, VALIUM
 – 1 – 4 WEEKS OF SYMPTOMS
 • ADMIT, HALTER TX, MAY NEED HALO TX
 • CONFIRM REDUCTION ON DYNAMIC CT
 • IF NO ANT DISPLACEMENT, SOFT COLLAR 1-2 WK
 • IF ANT DISPLACEMENT, BRACE TO IMMOBILIZE FOR 6 WEEKS (allow ligaments to heal)
ATLANTO-AXIAL ROTARY SUBLUXATION

- > 1 MTH
 - HALO TRACTION FOR THREE WEEKS
 - MANY WILL REDUCE, THEN LOSE REDUCTION AFTER TX RELEASED
 - SOME WILL NOT REDUCE AT ALL
 - SURGERY INDICATIONS (C1-2 PSF)
 - FIXED DEFORMITY
 - LOSS OF REDUCTION AFTER TREATMENT
 - ANT DISPLACEMENT > 5mm
 - NEURO SX
 - >3 MONTH DURATION OF SYMPTOMS
KLIPPEL-FEIL SYNDROME

- Congenital fusions of cervical vertebrae
- Clinical triad:
 - Low posterior hairline
 - Short neck
 - Limited neck motion
- Abnormal embryologic development of vertebrae
- Incidence = 0.7%
KLIPPEL-FEIL SYNDROME

• SPRENGEL DEFORMITY (33%)
• CARDIAC ANOMALIES
• RENAL ANOMALIES
 – Get renal U/S
• PULMONARY ANOMALIES
• DEAFNESS
• SCOLIOSIS
• X-RAYS VARIABLE:
 – Simple block vertebrae to bizarre anomalies
KLIPPEL-FEIL SYNDROME

- INSTABILITY COMMON ADJACENT TO FUSED LEVELS
 - Get flex/ext views prior to anesthesia
 - Commonly see C1-2 and C3-4 fusion with instability risk at unfused C2-3
KLIPPEL-FEIL SYNDROME

• NO CLEAR TX GUIDELINES
 - Treat similar to congenital scoliosis
 - High risk of developing instability
 • Avoid contact sports
 • Cervical traction, collars, analgesics for mechanical sx
 - Surgery
 • Fuse for neuro signs due to instability
 • Surgery for cosmesis alone = unwarranted and risky
ATLANTO-OCCIPITAL SYNOSTOSIS

• Anterior arch C1 fused to occiput
 - Posterior arch typically hypoplastic

• C1 height variably decreased
 - Allows odontoid to project into foramen magnum
 • “primary basilar impression
 • Often dysplastic odontoid

• Congenital fusion C2-3 in 70%

• Lower C-spine deformities common
ATLANTO-OCCIPITAL SYNOSTOSIS

• FINDINGS: (LIKE KLIPPEL-FEIL)
 - SHORT BROAD NECK
 - DECREASED NECK ROM
 - LOW HAIR LINE
 - SPRENGEL’S DEFORMITY
 - SHORT STATURE
 - HYPOSPADIAS
 - G-U ANOMALIES
 - EAR DEFORMITY
 - CLEFT PALATE
 - JAW ANOMALIES
ATLANTO-OCCIPITAL SYNOSTOSIS

- **OFTEN ASYMPTOMATIC UNTIL 40’S**
- **X-RAYS DIFFICULT TO EVALUATE**
 - Aim beam 90deg to skull, not C-spine
- **CT USUALLY NECESSARY**
 - “head wag” technique in young children
 - Skull blurs, C1-2 articulation visible
- **50% DEVELOP C1-2 INSTABILITY**
 - ADI CAN BE > 12 mm
- **NEURO SX’S CAN DEVELOP SLOWLY**
 - C1-2 instability progresses with age
ATLANTO-OCCIPITAL SYNOSTOSIS

• Neuro symptoms
 – Due to compression of brainstem or anterior upper cord by posteriorly projecting dens
 – Pyramidal signs most common (spastic, hyperreflex, weak, poor gait)
 – Can also get cranial N. involvement, posterior column involvement from foramen lip
ATLANTO-OCCIPITAL SYNOSTOSIS

• TREATMENT
 - C-COLLABRS, BRACES, TRACTION
 - TRAUMA AVOIDANCE
 - SURGERY
 • HIGH RATE OF PARALYSIS
 • WITH C1 - C2 INSTABILITY: C1-2, OR OCCIPUT - C2 FUSION
 - DECOMPRESSION IF NECESSARY
BASILAR IMPRESSION

- Indentation of skull floor by upper C-spine
- Cephalad tip of dens can protrude into foramen magnum
 - Brainstem compression
 - Vascular compromise
 - CSF flow alterations
- Primary vs. secondary

ADI = 11mm

McGregor's > 6.6mm
BASILAR IMPRESSION

- Primary basilar impression
 - More common
 - Congenital abnormality
 - Often assoc with other vertebral defects
 - Klippel Feil
 - Abnormal odontoid
 - Atlas hypoplasia
 - AO fusion
 - 1% incidence
BASILAR IMPRESSION

- Secondary basilar impression
 - Developmental
 - Less common
 - Due to softening of the occiput
 - PAGETS
 - OSTEOMALACIA
 - RICKETS
 - RENAL OSTEOODYSTROPHY
 - OSTEOGENESIS IMPERFECTA
 - ACHONDROPLASIA, HYPOCHONDROPLASIA
 - JRA
 - ANKYLOSING SPONDYLITIS
 - NEUROFI BROMATOSIS
BASILAR IMPRESSION

• FINDINGS
 - SHORT NECK (78%)
 - FACIAL ASSYMMETRY
 - PAINFUL/DECREASED CERVICAL MOTION (53%)
 - NEUROLOGIC SX’S
 • MOTOR WEAKNESS, LIMB PARES ThESIS AS
 • OFTEN ELICITED WITH MINOR TRAUMA
 • WEAKNESS/ PARAESTHESIA
 • OFTEN ASSOCIATED WITH CHIARI
 • CRANIAL N INVOLVEMENT (V, IX, X, XII)
 • HYDROCEPHALUS FROM CSF BLOCKAGE
BASILAR IMPRESSION

- **RADIOLOGY**
 - **PLAIN FILMS DIFFICULT TO ASSESS**
 - **McGREGORS BEST FOR SCREENING**
 - LANDMARKS EASY TO SEE AT ALL AGES ON LATERAL FILM
 - HARD PALATE → OCCIPUT
 - **McRAE BEST FOR MEASURING CLINICAL SIGNIFICANCE**
 - DEFINES FORAMEN OPENING
 - DENS ABOVE LINE = SX
 - CT - BONY ANATOMY, DEGREE OF INVAGINATION
 - MRI - NEURAL ANATOMY/COMPRESSION

Hard palate
BASILAR IMPRESSION

- **TREATMENT**
 - Difficult, requires multidiscipline approach
 - Ortho, neurosurgery, neuroradiology
 - Treatment is surgical
 - PSF in extension at OC junction
 - Anterior excision of odontoid if can’t be reduced
 - May need suboccipital decompression
FAMILIAL CERVICAL DYSPLASIA

- Atlas deformity
- Epidemiology unknown
- Partial absence of C1
 - Usually posterior elements
- Presentation
 - Torticollis, cervical “clunk”, suboccipital pain, decreased ROM
- Radiographs difficult to read
- Instability = Occiput-C1
 - Get flex/ext MRI
FAMILIAL CERVICAL DYSPLASIA

• TREATMENT
 – SERIAL FOLLOW-UP
 • Q6-12mos
 – SURGERY FOR:
 • PAIN
 • INSTABILITY
 • PROGRESSIVE DEFORMITY
 • NEUROLOGIC SYMPTOMS
 • PSF OCCIPUT TO C2 WITH HALO
HEMI-ATLAS

• 3 TYPES
 – I. ISOLATED HEMI-ATLAS
 – II. HEMI-ATLAS WITH LOWER SPINAL ANOMALY
 – III. HEMI-ATLAS WITH ATLANTO-OCCIPITOL ARTHRODESIS

• OFTEN ASSOC. W:
 – FORAMEN MAGNUM STENOSIS
 – CHIARI
 – VERTEBRAL ARTERY ANOMALY
SANDIFER SYNDROME

• GERD with torticollis
• Neck tilt likely attempt to ease reflux discomfort
• Can be diagnosis of exclusion
 - No tight SCM
 - X-rays of c-spine normal
 - Upper GI shows hiatal hernia, GERD
• Treating GERD usually resolves torticollis