CEREBRAL METABOLISM
CEREBRAL BLOOD FLOW
INTRACRANIAL PRESSURE

www.fisiokinesiterapia.biz
CEREBRAL METABOLISM

THE BRAIN AS A CONVERTER OF ENERGY

• It converts substrates (mainly glucose and oxygen) into the usable forms of energy with which it supports and regulates:
 • its many synaptic connections
 • voltage-dependent and agonist-operated ion channels
 • the synthesis, transportation, and packaging of neurotransmitters
CEREBRAL METABOLISM

• The brain energy requirement is substantial
• Its store of energy-generating substrates (glycogen, glucose, oxygen) is small
• At normal rates of ATP production, the available stores of glycogen should be exhausted in less than 3 min
Thus the normal functioning of the CNS depends on the continuous provision of appropriate energy substrates and the adequate removal of the waste products of metabolism.
CEREBRAL METABOLISM

- The requirement of the CNS for metabolic fuel is provided almost exclusively, at least under physiologic conditions, by the glycogen stored mainly in the liver, and, to a limited extent, other organs and the complete oxidation of the released glucose to carbon dioxide and water.
In the absence of ketosis (such as may occur in association with starvation or diabetes), the adult brain uses glucose as its sole metabolic substrate.
CEREBRAL METABOLISM

• Although glucose may be formed from noncarbohydrate sources (such as certain amino acids and the glycerol portion of fat molecules), **gluconeogenesis does not contribute much** to the brain's energy supply.
• With starvation gluconeogenesis is essential because the ability of the brain to metabolize ketone bodies depends on an input of glucose with which to regenerate certain intermediary substrates required by the citric acid cycle.
CEREBRAL METABOLISM

• Under certain circumstances, the energy released by the oxidation of ketone bodies by the brain is important, such as under physiologic conditions in the neonate and during starvation in the adult.
• With prolonged starvation, ketone bodies, acetoacetate, and beta-hydroxybutyrate will replace glucose as the predominant metabolic substrate in the brain.
CEREBRAL METABOLISM

- Even when ketone bodies are the predominant source of metabolic fuel, the brain cannot tolerate hypoglycemia; a supply of glucose, albeit small, is necessary.
CEREBRAL METABOLISM

GLYCOLYSIS

FIG. 1-3 Simplified version of biochemical reactions involved in citric acid cycle. (Modified from Siesjo BK: Brain energy metabolism, New York, 1978, Wiley.)
CEREBRAL METABOLISM

ELECTRON TRANSPORT CHAIN

Because the citric acid cycle, and the electron transport chain are aerobic processes (and yield 17 to 18 times as much ATP as glycolysis alone), anaerobic metabolism clearly cannot satisfy the energy requirements of the brain.
CEREBRAL METABOLISM

• The brain is an obligate aerobe; it cannot store oxygen, and its high metabolic requirements consume 40 to 70 ml O₂/min.

• Fortunately, under normal circumstances, a substantial safe margin exists, and the delivery of oxygen is considerably greater than demand.
CEREBRAL METABOLISM

BOX 1-1

SUMMARY OF BALANCE BETWEEN DEMAND FOR AND DELIVERY OF OXYGEN UNDER PHYSIOLOGIC CONDITIONS

<table>
<thead>
<tr>
<th>Demand for Oxygen</th>
<th>Delivery of Oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-5 ml per 100 g brain tissue per minute</td>
<td>20 ml per 100 ml blood</td>
</tr>
<tr>
<td>(i.e., 40-70 ml/min)</td>
<td>50 ml blood per 100 g brain tissue per minute</td>
</tr>
<tr>
<td></td>
<td>(i.e., 150 ml/min)</td>
</tr>
</tbody>
</table>
CEREBRAL METABOLISM

• As a result, any decrease in delivery (unaccompanied by any decrease in demand) will be counteracted, at least initially, by an increase in the amount of oxygen extracted from the blood, with the preservation of aerobic metabolism and normal clinical function
CEREBRAL METABOLISM

- After the supply of oxygen at the cellular level has become insufficient to support the continuing synthesis of adequate amounts of ATP, those energy-requiring processes that sustain the normal function of the cell and its integrity will fail.
CEREBRAL METABOLISM

THE BRAIN AS A CONSUMER OF ENERGY

- In humans, the CNS receives about 15% of the resting cardiac output (750 ml/min) and consumes about 20% (170 µmol/100 g/min) of the oxygen required by the body at rest (on average, the weight of the brain is only 2% to 3% of the total BW).
- One quarter (31 µmol/100 g/min) of the glucose consumed by the body is used by the brain.
CEREBRAL METABOLISM

• The usable energy generated by the brain (as ATP) is consumed
 • in the maintenance of the transmembrane electrical and ionic gradients (both in the resting state and after depolarization);
 • the support of the structure of the membrane per se;
 • the drive of axonal flow;
 • the synthesis, packaging, release, and reuptake of neurotransmitters
CEREBRAL METABOLISM

• By far the most costly in terms of energy expenditure is ion transport
• About 70% of the ATP produced is consumed in maintaining the nonequilibrium distribution of ions across the cell membrane
Therefore any critical imbalance between the availability of and the demand for energy will result in a loss of activity in the membrane pump, the accumulation of sodium within the cell, and an increase in extracellular potassium concentration.
CEREBRAL METABOLISM

• These events lead to the depolarization of the membrane, the opening of voltage-dependent and agonist-operated calcium channels, and an increase in intracellular calcium concentration.

• The control of cell volume is lost, as are electrical excitability, synaptic function, and the regulation of acid-base balance.
CEREBRAL METABOLISM

THE BRAIN AS A CONSERVER OF ENERGY

- Under physiologic conditions, the expenditure of energy is controlled by the activity of the cells.
- The consumption of fuel is related to the work done and not the reverse.
• In conscious human under physiologic conditions, the supply of substrates (as evidenced by the blood flow) parallels the expenditure of energy (as reflected in the oxygen consumption and glucose use)
CEREBRAL METABOLISM

• Cerebral function depressed (coma):
 • requirements for energy is decreased
 • total CBF, O₂ consumption and glucose use are much lower than in the normal, fully conscious state

• Cerebral function activated (seizures):
 • requirements for energy is increased
 • total CBF, O₂ consumption and glucose use are much higher than in the normal, fully conscious state
Further evidence is available from studies in which neural pathways have been deliberately activated (rCMRglc)
Alkire. Anesthesiology 89: 323, 1998
In addition to glycolysis and oxidative phosphorilation, the brain has two other mechanisms that can help to maintain a stable ATP concentration.
CEREBRAL METABOLISM

THE CREATINE PHOSPHOKINASE REACTION

$\text{PCr} + \text{ADP} + \text{H}^+ \rightleftharpoons \text{ATP} + \text{Cr}$
CEREBRAL METABOLISM

THE ADENYLATE KINASE REACTION

\[\text{ADP} + \text{ADP} \rightleftharpoons \text{ATP} + \text{AMP} \]
CEREBRAL METABOLISM

• Of the carbohydrate consumed by the brain, 95% undergoes oxidative metabolism; 43% of the energy originally held in an unusable form in glucose is captured by the ATP.
• The remainder is given off as heat.
CEREBRAL METABOLISM

• The neurons can conserve energy by “switching off” much of their expenditure of energy (before they have completely exhausted their reserves) when the delivery of substrates decreases to critical levels.

• In essence, function is sacrificed to conserve fuel.
• The brain has the capacity to “idle” and use less fuel
• As long as damage has not been done to the “engine” of the cell itself, function can be restored when more fuel becomes available
CEREBRAL METABOLISM
CEREBRAL BLOOD FLOW
INTRACRANIAL PRESSURE
CEREBRAL BLOOD FLOW

• The CNS is a complex and structurally diverse organ and comprises multiple functional subdivisions
• A wide range of metabolic rates exist in the brain
• There is an approximately fourfold difference in cerebral metabolic rate for oxygen and CBF between cortical gray and white matter
CEREBRAL BLOOD FLOW

- Flow and metabolism are said to be coupled, and under physiologic circumstances, including sedation and general anesthesia, this coupling is preserved.
CEREBRAL BLOOD FLOW

• A rapid and precise regulatory system has evolved in the CNS whereby instantaneous increases in metabolic demand can be rapidly met by a local increase in CBF and substrate delivery.
• The time course of this regulatory process is rapid.
• Controlateral cortical areas “light up”, demonstrating increased flow with hand movement, and a variety of motor and cognitive tasks can be mapped by using CBF techniques.
Visual stimulation results in almost immediate increases in flow velocity through the posterior cerebral arteries.
CEREBRAL BLOOD FLOW

REGULATION OF CEREBRAL BLOOD FLOW

• The remarkable ability of the cerebral vessels to respond to changes in cerebral metabolism, perfusion pressure, and milieu interior, such as PaCO$_2$, are mediated by a number of cellular mechanisms

• These mechanisms involve:
 • nitric oxide
 • prostaglandins (PGE$_2$, PGI$_2$, and PGF$_{2\alpha}$)
 • vasoactive peptides
 • potassium channels
 • endothelin
NITRIC OXIDE

• Although unlikely to be directly involved in pressure autoregulation, NO is the subject of intense scrutiny as a mediator of vascular tone and as a neurotransmitter.
• NO appears to play a major role as a moderator/mediator of vascular tone, functioning as an endothelin-derived relaxing factor (ERDF).
• NO might be involved in regulation of basal cerebrovascular tone.

CELLULAR MECHANISMS OF CEREBRAL VASOMOTION
CEREBRAL BLOOD FLOW

CELLULAR MECHANISMS OF CEREBRAL VASOMOTION

VASOACTIVE PEPTIDES
(CGRP, substance P, neurokinin A)

• Calcitonin gene-related peptide (CGRP) acts by increasing cAMP concentrations and partly mediates cerebral vasodilation in response to hypotension, cortical spreading depression, and cerebral ischemia
• The physiologic roles of substance P and neurokinin A are not yet understood
CEREBRAL BLOOD FLOW

CELLULAR MECHANISMS OF CEREBRAL VASOMOTION

POTASSIUM CHANNELS

- Of the several potassium channels, two are of particular importance in the regulation of vascular tone: KATP channel and calcium-activated potassium (KCa) channel
- KATP channels may play some role in vasodilation during hypotension, hypercapnia, acidosis, and hypoxia
- KCa (BKCa) channels may be involved in the regulation of the basal cerebrovascular tone in large arteries
CEREBRAL BLOOD FLOW

CELLULAR MECHANISMS OF CEREBRAL VASOMOTION

PROSTAGLANDINS

• Prostaglandins probably play a more significant role in the regulation of the neonatal rather than adult CBF
• Small amounts of prostaglandins are necessary for permitting CO₂ response to hypercapnia (permissive role)
Conceptually, a convenient way to model the cerebral circulation is to envision a parallel system of rigid pipes in which Ohm’s law would apply.

Circulatory resistance can be modeled in terms of the Hagen-Poiseuille’s relationship:

\[R = \frac{8l\mu}{r^4} = \frac{P_i - P_0}{F} \]

When these equations are applied to an intact vascular system, a number of critical assumptions are not met:

- the equations apply to Newton fluids during nonturbulent flow through rigid tubes
- circulation, in contrast, is pulsatile with capacitance and the potential for turbulence
CEREBRAL BLOOD FLOW

HEMODYNAMIC FACTORS: PRESSURE REGULATION

- In normal individuals, CBF is constant at a CPP of approximately 50 to 150 mmHg
- As the ability of the cerebral vasculature to respond to changes in pressure is exhausted, CBF passively follows changes in CPP
CEREBRAL BLOOD FLOW

HEMODYNAMIC FACTORS: PRESSURE REGULATION

• It is only a statistical description of how the general population responds, and a value of 50 mmHg, even in nonhypertensive individual does not guarantee that a particular patient remains within the “autoregulatory plateau”
• Individual response vary widely
CEREBRAL BLOOD FLOW

HEMODYNAMIC FACTORS: PRESSURE REGULATION

• Ideally, at lower limit of cerebral autoregulation, a near maximal vasodilation is thought to take place.
• However, evidence shows that even below the lower limit of autoregulation, pharmacologic vasodilation may be possible.
• The relevance of the idealized cerebral autoregulation curve, in particular the lower limit of autoregulation, has been questioned by some authors.
CEREBRAL BLOOD FLOW

HEMODYNAMIC FACTORS: PRESSURE REGULATION

- Cerebral blood volume (CBV) changes in a quantitatively different fashion than CBF
- For example, increasing systemic blood pressure decreases CBV in the process of maintaining CBF constant
- This effect may be exploited in the setting of decreased intracranial compliance with or without an attendant increase in ICP
- However, the physiology of CBV is less well known than that of CBF
CEREBRAL BLOOD FLOW

HEMODYNAMIC FACTORS: VENOUS PHYSIOLOGY

• The influence of the cerebral venous system on overall autoregulation is unclear.
• The venous system contains most of the CBV; therefore slight changes in vessel diameter may have a profound effect on intracranial blood volume.
• Available evidence suggests that the venous system may be regulated more by neurogenic than by myogenic or metabolic factors.
CEREBRAL BLOOD FLOW

METABOLIC AND CHEMICAL INFLUENCES: CARBON DIOXIDE

- CO$_2$ is a powerful modulator of CVR
- Rapid diffusion across the BBB allows CO$_2$ to modulate extracellular fluid pH and affect arteriolar resistance
- The mechanism of vasodilation by CO$_2$ may differ between adults (nitric oxide and cGMP) and in neonates (prostaglandins and cAMP)
- By active, though somewhat sluggish, exchange of HCO$_3^-$, the CSF eventually buffers itself against alterations in pH by CO$_2$ diffusion
CEREBRAL BLOOD FLOW

METABOLIC AND CHEMICAL INFLUENCES: CARBON DIOXIDE

• At normotension, there is a nearly \textit{linear} response of CBF at a PaCO$_2$ between 20 and 80 mmHg (CBF changes about 2% to 4% for each mmHg change in PaCO$_2$)
• The linearity of the response \textit{breaks down} as PaCO$_2$ approaches the extremes
• In general doubling PaCO$_2$ from 40 to 80 mmHg doubles CBF, and halving PaCO$_2$ from 40 to 20 mmHg halves CBF
• This cerebrovascular CO$_2$ response is highly reproducible
CEREBRAL BLOOD FLOW

METABOLIC AND CHEMICAL INFLUENCES: CARBON DIOXIDE

• In a fashion analogous to blood pressure autoregulation, the CO₂ response is limited by either maximal vasodilation at extreme hypercapnia or maximal vasoconstriction at extreme hypocapnia.
• Hypocapnia, however, may adversely affect cellular metabolism and shift the oxyhemoglobin dissociation curve to the left.
Severe hypocapnia (approximately 10 mmHg) can result in anaerobic glucose metabolism and lactate production. It is not clear whether this represents impairment of tissue oxygenation or some effect of tissue alkalosis and transcellular ionic shift.
Arteriolar tone, set by the systemic arterial blood pressure, modulates the effect of PaCO₂ on CBF
- Moderate hypotension blunts the ability of the cerebral circulation to respond to changes in PaCO₂, and severe hypotension abolishes it altogether.
CEREBRAL BLOOD FLOW

METABOLIC AND CHEMICAL INFLUENCES: CARBON DIOXIDE

- Conversely, PaCO_2 modifies pressure autoregulation, and from hypercapnia to hypocapnia there is a widening of the “autoregulatory plateau”
• Within physiologic range, \(\text{PaO}_2 \) does not affect CBF
• Hypoxemia, however, is a potent stimulus for arterial dilation, as a result of tissue hypoxia and concomitant lactic acidosis, although the precise mechanism is unclear.
CEREBRAL BLOOD FLOW

METABOLIC AND CHEMICAL INFLUENCES: OXYGEN

• CBF begins to increase at a PaO₂ of about 50 mmHg and roughly doubles at a PaO₂ of 30 mmHg
CEREBRAL BLOOD FLOW

METABOLIC AND CHEMICAL INFLUENCES: OXYGEN

- **Hyperoxia** decreases CBF, producing a modest 10% to 15% decrease at 1 atmosphere
- **Hyperbaric oxigenation** in humans decreases CBF, but high atmospheric pressure alone probably does not affect CBF
CEREBRAL BLOOD FLOW

METABOLIC AND CHEMICAL INFLUENCES: TEMPERATURE

- Cerebral metabolism decreases with decreasing temperature. For each 1 °C decrease in body temperature, CMRO₂ decreases by approximately 7%.
- The relationship may be characterized by the metabolic temperature coefficient Q_{10}

\[
\frac{CMRO_2(T)}{CMRO_2(T-10)}
\]
CEREBRAL BLOOD FLOW

METABOLIC AND CHEMICAL INFLUENCES: TEMPERATURE

• The value for cerebral Q_{10} in the physiologic range of 27 °C to 37 °C is between 2.0 and 3.0
• Below 27 °C, however, Q_{10} increases to near 4.5
• The lower Q_{10} between 27 °C and 37 °C simply reflect the decrease in the rates of biochemical reaction and the higher Q_{10} between 17 °C and 27 °C is due to the additive effect of the decrease in neuronal function
Because the regulation of CBF is known to be closely coupled to cerebral metabolism, it is not surprising that this hypothermia-induced reduction in CMRO\textsubscript{2} is reflected by a parallel decrease in CBF.
One of the most striking differences between the systemic and cerebral circulation is the relative lack of humoral and autonomic influences on normal cerebrovascular tone. The systemic circulation is regulated to a large extent by sympathetic nervous activity, but autonomic factors do not appear to control the cerebral circulation. Thus autonomic nerves are not necessary for regulatory responses, but they may modify these responses in several important ways.
CEREBRAL BLOOD FLOW

NEUROGENIC INFLUENCES

FIG. 2-15 Autonomic effects on autoregulation. Higher sympathetic tone, by adding of a “proximal resistor” to the arteriolar bed, shifts the upper and lower ends of autoregulation to the right.
• **Chronic hypertension** is accompanied by a rightward shift of the autoregulation curve.
• Although this shift has some effect in protecting the brain against “breakthrough” by surpassing the upper limit of autoregulation, it occurs at the expense of the lower limit.
• Hypertensive patients may suffer cerebral ischemia at blood pressure level well tolerated by normal patients.
• Despite the autoregulatory shift seen with chronic hypertension, CO$_2$ reactivity in this group is no different from that in normotensive population
• The vascular changes and autoregulatory shift induced by chronic hypertension are **modified by long-term antihypertensive therapy**
• The degree of reversal appears to be related to the length of treatment and correlates with the resultant fall in blood pressure
CEREBRAL BLOOD FLOW

THE ELDERLY PATIENT

• Normal resting hemispheric CBF in humans is known to decrease
 with increasing age, however, the significance of this decreased
 perfusion is unclear
• Accompanying this change in total CBF is a redistribution of rCBF:
 relative frontal hyperemia in the young contrasts with a more
 uniformly distributed gray matter flow in the elderly
CBF IN THE ELDERLY PATIENT

SPECT
CEREBRAL BLOOD FLOW

THE ELDERLY PATIENT

• Concerning cerebrovascular reactivity, the cerebral vasoconstrictive response to hypocapnia in humans becomes diminished with advancing age.
• CO₂ reactivity at age 65 is roughly half that at age of 20.
• The vasodilatory response to hypercapnia is also altered in the elderly.
ALTHOUGH MOST STUDIES HAVE SHOWN A DECREASE CBF, AS WELL AS A DETERIORATION IN THE REGULATION OF CBF WITH ADVANCING AGE, THIS PREMISE IS NOT UNIVERSALLY ACCEPTED BECAUSE ISOLATING AGE AS AN INDEPENDENT FACTOR IS OFTEN DIFFICULT
CEREBRAL BLOOD FLOW

AUTOREGULATORY FAILURE

- Cerebral autoregulation is disturbed in a number of disease states:
 - acute ischemia
 - mass lesions
 - trauma
 - inflammation
 - neonatal asphyxia
 - diabetes mellitus
CEREBRAL BLOOD FLOW

AUTOREGULATORY FAILURE

- Despite a wide range of causes, the final common pathway of dysfunction, in its most extreme state, may be termed *vasomotor paralysis*
CEREBRAL BLOOD FLOW

AUTOREGULATORY FAILURE

• The term *dissociated vasoparalysis* describes retained CO₂ responsiveness with loss of autoregulatory capacity to changes in blood pressure.
• This response can be observed in regions contralateral to tumor or infarction or during hyperperfusion after AVM resection.

PRESSURE REGULATION IS MUCH MORE VULNERABLE THAN IS LOSS OF CO₂ REACTIVITY OR POSSIBLY OTHER METABOLIC INFLUENCES ON REGULATORY MECHANISMS
• TOTAL LOSS OF CO₂ RESPONSIVENESS IS PROBABLY A PRETERMINAL EVENT
CEREBRAL BLOOD FLOW

AUTOREGULATORY FAILURE

• **Diaschisis** is the occurrence of hypoperfusion and hypometabolism remote from a damaged area
• **False autoregulation** is a phenomenon described in the setting of head injury: in a paralyzed circulatory bed, pressure-passive increases in CBF may result in local pressure gradients in the most damaged areas; local swelling may then maintain CBF constant despite increasing systemic pressure
HYPOPERFUSION AND ISCHEMIA

FIG. 2-16 Autoregulatory failure. The left side of Fig. 2-4 is expanded here to show idealized changes in various physiologic functions (some of the pathophysiologic events indicated overlap). The values for CPP are only approximate, and many of the changes in the various covariates may overlap. They are stylized here for the sake of clarity. CBF (cerebral blood flow), CVR (cerebrovascular resistance), CBV (cerebral blood volume), OEF (oxygen extraction fraction), CMRO2 (cerebral metabolic rate for oxygen), EEG TP (total power of the cortical EEG signal), and ionic shift (e.g., water and Na+ into the cells and K+ out of the cells) are shown along the left of the figure. The various CBF thresholds are indicated by the broken lines and labeled at the bottom of the figure. The functional state between each threshold is shown along the abscissa. In this figure the loss of EEG power is still above the line for membrane failure. Clinically, any event that results in EEG signs of ischemia should be assumed to represent the potential for irreversible damage and should be treated accordingly. (From Young W. Clinical neuroscience lectures, Münster, 1999, Cathenart Publishing.)
INTERACTION OF DEGREE AND DURATION OF FLOW REDUCTION ON NEUROLOGIC FUNCTION

CBF (ml/100 g/min)

Penlucida
Penumbra
Infarct

Ischemia duration (hours)
CEREBRAL BLOOD FLOW

HYPOPERFUSION AND ISCHEMIA

• Neuronal tissue can receive flow at a level that prevents normal function but does not result in permanent damage. If flow is returned to adequate levels, function returns.

• Two such states may exist: the *penlucida*, from which tissue recovers function irrespective of the ischemic time, and the *penumbra*, from which tissue is salvageable only if flow is restored within a certain time.
CEREBRAL BLOOD FLOW

HYPERPERFUSION AND CIRCULATORY BREAKTHROUGH

- If CPP exceeds the higher limits of autoregulation, flow initially increases with a fixed maximal arteriolar resistance.
- At some point, the arteriolar bed dilates under the increasing pressure, and the resistance falls as well.
- Clinically one may observe brain swelling from this intravascular engorgement, vasogenic edema from opening of the BBB, and intracerebral hemorrhage from vessel rupture.
CEREBRAL METABOLISM
CEREBRAL BLOOD FLOW
INTRACRANIAL PRESSURE
• The term *intracranial pressure* is usually construed as defining a uniform pressure within the cranial vault
• This assumption of uniformity is in many cases not valid
• In situations in which ICP gradients exists, monitoring of pressure at a single site will provide only limited information, and an understanding of the mechanical and anatomic factors contributing to the measured ICP is therefore essential to the correct interpretation of the measured data
Lundberg first described rhythmic and other variations in ventricular fluid pressure and attempted to correlate them with their physiologic or pathologic mechanisms. His work described the presence of different classes of pressure “waves”, which he labeled A, B, and C.
• The **B wave** is a rhythmic variation related to various types of periodic breathing, with a frequency of **0.5 to 2 per minute**. It is thought to be due to increase in cerebral blood velocity causing transient increases in CBF.
INTRACRANIAL PRESSURE

- The harmless C waves are of low amplitude, have a frequency of 6 per minute, and occur in association with blood pressure phenomena (Traube-Hering-Mayer waves)
• A waves (plateau waves) were often associated with significant neurologic manifestations
• An A wave is typically an acute elevation in ICP lasting from 5 to 20 minutes followed by a rapid fall to the former baseline level
• The amplitude of the plateau wave is generally 20 mmHg, although it may reach levels of 100 mmHg
• The normal **brain volume** is approximately 1400 ml; whereas the intracranial **CSF volume** is 75 to 100 ml, and the **cerebral vascular volume** is about 150 ml.

• Pathologic circumstances may introduce a **fourth component**, the **mass lesion** (tumor, abscess, hematoma, contusion), that may behave differently from the three normal components.
Components of Intracranial Volume and Their Pathology

- Parenchyma:
 - Intracellular Fluid
 - Cytotoxic edema
 - Extracellular Fluid
 - Vasogenic edema

- Blood:
 - Venous:
 - Venous hypertension
 - Outflow obstruction
 - Arterial:
 - Hypercapnia
 - Hypoxia
 - Dysautoregulation

- CSF:
 - Venous Subarachnoid Interstitial
 - Ventricular

Mass Lesions:
- Hydrocephalus
- Communicating
- Noncommunicating
- Extraventricular
- Normal-pressure

FIG. 5-2 Components of intracranial volume. Shaded portions indicate those elements that undergo volume changes in pathologic states; examples of such conditions are given for each component.
• Within the cranial vault, changes in the volume of one component will necessitate **compensatory changes** in volume of one or more of the other components if the ICP is to remain constant.
The relative proportion and arrangements of brain parenchyma, CSF, and blood volume - together with mass lesion when present - may play an important role in determining ICP.

The putative relationship between volume and pressure in the intracranial space has been expressed as the so-called pressure-volume curve.
• The relationship between cerebral blood volume and compliance is more complex
• The pathologic plateau waves occurred in association with regional increases in cerebral blood volume during a presumably low compliance state
• It has been proposed that vasodilation causes a rapid rise in ICP with concomitant obstruction of cerebral venous drainage, thus resulting in the increased rCBV and decreased CBF
INTRACRANIAL PRESSURE

• Although ICP is usually conceived to be a measure of global intracranial conditions, in many clinical situations this is untrue.
• The intracranial space is normally nonuniform: it contains irregularly shaped CSF spaces with distinct flow patterns and is subdivided by bony, dural, and arachnoidal barriers.
• Asymmetry is further introduced by the presence of mass lesions.
INTRACRANIAL PRESSURE

• Under normal conditions, the various compartments communicate via the CSF channels, both within and outside the brain substance
• Focal pathologic lesions may cause obstruction of CSF flow and blockage of CSF egress from one portion of the ventricular system but not from another
• Under these circumstances, a catheter placed in one ventricular space may not accurately reflect pressure in another
• In addition, focal brain pathologic conditions alter the viscoelastic properties of the injured brain
• When pressure gradients become large enough to overcome the resistance of brain tissue to distortion, shift of intracranial contents from one compartment to another occurs.
• This shift is known as herniation.
• The hemispheres may herniate under the falx (subfalcine herniation), the supratentorial contents may herniate through the tentorial notch (transtentorial herniation), or the cerebellar tonsils may herniate through the foramen magnum.
• Movement will continue until the pressure gradient is eliminated or until the physical properties of the herniating tissue prevent further movement, even though a pressure gradient remains.
• After **cerebellar tonsillar herniation**, intracranial and spinal subarachnoid will no longer be equal
• After **subfalcine herniation** in the presence of a cerebral hemispheric lesion (sometimes accompanied by ventricular trapping), pressures on the two sides of the falx may remain unequal
• A small **posterior fossa hematoma** may block the aqueduct of Sylvius while expanding the posterior fossa volume, resulting in unequal pressures above and below the tentorium
In all these instances, it can be that the brain shift and movement itself, through tissue distortion or vascular compression, are more deleterious than the elevated ICP. With neuroimaging (CT and MRI), situations in which the possibility of intercompartmental pressure differences exists are usually apparent.