Biomechanics of the Spine

www.fisiokinesiterapia.biz

General Kinematics

- Curvature
 - Sagittal
 - Shape of vertebrae & disks, rib cage, inclination of sacral end plate
 - Developmental phenomenon, posture, rate of growth
 - Add flexibility & shock absorbing capability
- 6 degrees of freedom
 - Translation & Rotation
 - 3 orthogonal planes
 - Motion usually coupled
- Center of gravity in front of 2nd sacral segment

ROM

- Facet joints & Intervertebral disks
- C spine
 - Flexion-extension predominates, midcervical
 - Axial rotation, upper cervical
 - Lateral bending
- T spine
 - Little motion, rib cage
- L spine
 - Lateral bending, mid portion
 - Flexion-extension, lumbosacral
 - Rotation, minimal
- Greater mobility at C & L spine> more stress> more clinical complaints

The Motion Segment

- Functional Spinal Unit
 - 2 adjacent vertebrae & intervening soft tissue
- Anterior
 - Vertebral body
 - Disk
 - ALL, PLL
 - Support, absorb impact, restrict vertical translation
- Posterior
 - Neural arch & its processes
 - Facet joint

Disk

- Major restraint to motion
- Viscoelastic behavior, demonstrates Creep & Hysteresis
- Avascular
 - End-plate microfractures > vascular ingrowth & granulation tissue > altered mechanical behavior
 - End-plates influence the nutrition; diffusion
- Lumbar FSU
 - Disk 40% of torque resistance
 - Rest by posterior element and ligaments
- Diurnal change in height
 - 1% shorter at night; 2% for children; 0.5% for elderly
 - 50% of height lost during first 2 hours in upright
- Healthy disks creep slower

Intradiscal Pressure

- Compressive loads in vivo: 500N standing, 700N sitting
- Increased to 3000 to 6000N during lifting of moderate weights, decreases with load closer to body
- Estimate of P = 1.5X compressive load divided by the cross sectional area
- Disk pressure is usually uniform
- Pressure lowest in supine position
- Disk usually does not fail, but end plates fracture

Annulus Fibrosus

- 90 collagen sheets
- Fibers of adjacent sheets 30° to each other
- Hyaline cartilage plates & bony ring epiphyses of vertebral bodies
- Vertical component tension resistor during flex-ex & lateral bending
- Horizontal component rotary stress
- Axial load tensile stress

- Nucleus Pulposus
 - Eccentrically positioned posteriorly
 - Young & healthy
 - 50% cross-sectional
 - 90% water, bound to proteoglycans
 - Aging> dessication> increase viscosity> fissuring
 - Pascal's law
 - Fluid mass within closed container> local increase in pressure> transmit around entire side wall (annulus)
 - Young nucleus> even distribution of load
 - Old nucleus> undue concentration on vertebral body edges
 - Small displacement w/ ROM, ball-bearing like
 - Compressive stress predominates

Vertebral Body

- Primary load-transmitting element, 80-90%
- Bone Mineral Content, Size
 - Osteoporosis> loss of horizontal trabeculae
 - Increasing size from C to L spine
- Compressive load> pressure higher in center of end plates than periphery
- In vivo, filled with blood> greater strength, hydraulic shock absorber
- Weaker anterior trabeculae, Wolff's law

Posterior Elements

- pedicles, lamina, facet joints, spinous & transverse processes
- Bony processes > lengthen moment arms of muscles
- Forces on processes> transmitted to Lamina
- Forces on posterior elements> transmitted to vertebral bodies from Pedicles
- Pars Interarticularis
 - Large bending forces; excessive extension
 - Thicker than rest of lamina
 - Common site of stress/fatigue fractures> weakens motion segment> spondylolithesis

Facet Joints

- Major role in controlling motion
- Resist torsion & shear, role in compression
- Lumbar FSU facets 40% torque resistence, 40% disk, 20% ligaments
- Load sharing varies with flexion & extension
 - Seated position > decreased lumbar lordosis > increased intradiscal pressure & decreased load-bearing of the facets
- Orientation of facets
 - C spine 45° transverse, parallel frontal
 - T spine 60° transverse, 20° frontal
 - L spine 90° transverse, 45° frontal
- Capsules lax> allow gliding

Ligaments

- Nonsegmental longitudinal (ALL, PLL, supraspinous)
- Segmental longitudinal (interspinous, intertransverse, ligamenta flava)
- Capsular ligaments
- Limit motion, provide stability/equilibrium
- ALL
 - Interlinked to disks
 - Resists extension
 - 2X tensile strength of PLL

PLL

- Narrow over vertebral bodies, flare out over disks; thin lateral extension
- Resists flexion
- Ossification> spinal stenosis
- Ligamentum Flavum
 - Elastic & strong
 - "shingled" configuration with laminae
 - Lengthen w/ flexion, shorten w/ extension
 - Loss of disk height or hyperextension > buckle into spinal canal
- Interspinous & Supraspinous
 - Resist flexion
 - Long moment arms

Cervical Spine

- Almost infinite number of head positions
- Spinous processes increase in length distally
- C 1-2 almost transverse, C 2- T 1 45° to transverse
- Occipitoatlantoaxial complex specialized articulation, large ROM, no disk
 - 60% axial rotation C 1-2, difficult for occipital condyles to slide on C 1, no loss w/ aging
 - Lateral bending small, alar ligament
 - IAR close to cord, rotate without impingement

- C 3-7 flex-ex predominates, lateral bending
 - IAR lower vertebra (flex-ex); upper vertebra (lateral bending)
 - Distinct coupling pattern lateral bending & axial rotation, spinous process point opposite to lateral bend
 - Axial rotation limited by uncinate processes & facets
- Intradural sagittal diameter
 - 2-3mm lower in extension
 - Posteroinferior margin of upper vertebra & ligamentum flavum
 - Cord thicker in extension > less play in ext
 - Canal widest at C 1-2, narrows at C 5

Thoracic Spine

- Rigid, transition between C & L regions
- Facet orientation changes, may be abrupt T 9-12
- Flex-ex upper: 4°, middle: 6°, lower: 12°
- Lateral bending upper: 6°, lower 2/3: 9°
- Axial rotation upper 1/2: 8°, lower 3
 segments: 2° each
- Upper & lower region lateral bending & axial rotation strongly coupled
- Middle variable coupled motion

Lumbar Spine

- Flexion-Extension
 - large, due to sizable disks & lack of facet restraint
 - IAR posterior half of disk, moves w/ flex-ext
 Centrode path of moving IAR
- Lateral bending IAR on left side of disk w/ right bend
- Axial rotation IAR in posterior nucleus
- Disk degeneration IAR spread out

- Sagittal plane translation
 - 2-3 mm, normal in symptom free pts
 - Up to 5 mm in L 3-4 & L4-5, 4 mm in L5-S1
- Lateral bending & axial rotation coupling
 - Spinous processes point in same direction as lateral bending
 - Opposite of cervical, upper thoracic, lumbosacral

Sacroiliac Region

- Poorly understood
- Partly synovial, partly syndesmotic
- Stiff, coarse interdigitating articular surfaces
- IAR scattered
- Complete ankylosis in up to 76% over age of 50
- Joint motion overcome ligamentous resistance,
 1 leg stance

Vertebral Muscles

- Spine buckles w/ small compressive forces without muscles
- Anterior, posterior, lateral
- Gross-function span several motion segs
- Fine-function span 1 or 2 segs
- Deep back muscles are major spine movers; many other groups

Function

Anterior

Muscles in front flex the spine.

If the muscle runs a little obliquely and contracts independently of the corresponding muscle on the opposite side, it rotates and bends the spine laterally, as well as flexes it.

Muscles

Longus collis*

Longus capitis

Rectus capitis anterior

Rectus capitis lateralis*

Obliquus externus abdominis*

Obliquus internus abdominis*

Psoas major*

Psoas minor*

Iliacus

Quadratus lumborum

Posterior

Muscles in back extend the spine.

If the muscle runs a little obliquely and contracts independently of the corresponding muscle on the opposite side, it rotates and bends the spine laterally, as well as extends it.

```
Superficial stratum
Splenius capitis**
Splenius cervicis*
Erector spinae (sacrospinalis)
Iliocostalis**
Longissimus*
Spinalis**
Deep stratum
  Semispinali
     Thoracis*
     Cervicis*
     Capitis*
  Multifidi*
     Rotatores*
     Interspinales
     Intertransversaril*
```


Muscles on the side bend the spine laterally Trapezius

Sternocleidomastoid*

Quadratus lumborum

Scalenus*

Anterior

Medial

Posterior

- Little muscular activity to maintain upright position
 - Spine in near equilibrium
 - Cervical & lumbar curvatures
 - Trunk relatively even in front & behind line of gravity

Flexion

Anterior muscles initiate (isotonic)>
 anterior dysequilibrium> gravity
 takes over, controlled by extensors
 (eccentric)