Temporal bone trauma

- Epidemiology
- Pathophysiology
- Evaluation
- Symptoms
- Treatment
Epidemiology

- 20% of all skull fractures
- Mechanism of injury
 - Motor vehicle collision
 - Assault
 - Falls
- Gender
 - 3 male : 1 female
- Age
 - 70% in 2nd, 3rd, 4th decades
- Pediatrics
 - Bimodal distribution
 - 2-3 years = falls
 - 15 years = MVC
Epidemiology

[Bar chart showing the percentage distribution of different causes of injury: Automobile (30%), Assault (15%), Fall (14%), Motorcycle (13%), Pedestrian (10%), Bicycle (7%), Gunshot (3%), Misc (4%).]
Pathophysiology

- **Application of force**
 - Requires 1875 pounds of lateral force
 - Fractures along structurally weakest points

- **Structures at risk**
 - Cranial nerves VII, IX, X, XI
 - Cochlea
 - Labyrinth
 - Ossicles
 - Tympanic membrane
 - Carotid artery
 - Jugular vein

- **Open fractures (60%)**
 - Bloody otorrhea, brain herniation, or CSF in external auditory canal, eustachian tube, or site of penetrating injury
Evaluation

- Multiply injured patient
 - Airway
 - Ventilation
 - Circulation
 - Neurologic status
 - Glasgow coma scale
 - Cervical spine immobilization
 - Documentation of movement of face and extremities
Evaluation

- Neuro-otologic examination
 - Subjective
 - Disequilibrium
 - Hearing loss
 - Vertigo
 - Prior otologic history
 - Mechanism of injury
 - Direction of force
 - Site of impact
 - External ear
 - Lacerations
 - Hematoma
 - Otorrhea
 - Bony deformity
- Otoscopic examination
 - Tympanic membrane
 - Middle ear
- Cranial nerves
 - Tuning forks
- Characterization of otorrhea if present
- Radiology
Neuro-otologic examination

- **Nystagmus**
 - Peripheral vertigo
 - Horizontal or rotatory
 - Suppressible with fixation
 - Most common vertigo after head trauma is BPPV
 - Central vertigo
 - Vertical or direction-changing
 - Fails to suppress with fixation

- **ENG**
 - As outpatient if symptoms do not resolve

- **Fistula test**
 - Not performed acutely
 - Risk of iatrogenic injury and introducing contaminants into inner ear outweigh benefits

- **Hearing**
 - Assess initially with tuning forks
 - Audiogram
 - Formal audiogram prior to surgical intervention
 - Not necessary in acute setting if symptoms/clinical evaluation consistent with CHL
Battle’s sign

- Extravasated blood from posterior auricular artery
Otoscopic examination

- Hemotympanum
- EAC laceration
- TM perforation
- Ossicular disruption
Imaging

- Imaging follows acute stabilization of life-threatening injuries
- Screening head CT to rule out intracranial injuries
- High-resolution CT scan of temporal bones if fracture suspected
- High-resolution CT scan of temporal bones required if:
 - Facial paralysis
 - CSF leak
 - Disruption of superior wall of EAC
 - Suspected vascular injury
Classification

- **Traditional**
 - Longitudinal
 - Transverse
 - Oblique

- **Newer classification scheme**
 - Disruption of otic capsule
 - Sparing of otic capsule
Longitudinal fractures

- 70-90% of temporal bone fractures
- Parallel to long axis of petrous apex
 - Starts in squamous part of temporal bone
 - Through posterior/superior EAC
 - Through roof of middle ear (anterior to membranous labyrinth)
 - Into carotid canal, ending at foramen lacerum
- Injury to temporoparietal region
Longitudinal fractures: Complications

- Facial nerve palsy
 - 20% of longitudinal fx
- Hearing loss
 - Conductive
 - Tympanic disruption
 - Ossicular derangement
 - Hemorrhage into middle ear
Transverse fractures

- 10-30% of temporal bone fractures
- Perpendicular to long axis of temporal bone
 - Start at foramen magnum
 - Perpendicularly across petrous pyramid
 - Through labyrinthine capsule
 - Into middle cranial fossa
 - End in foramen lacerum
- Impact at frontal or occipital area
Transverse fractures: Complications

- Facial nerve palsy
 - 50%
- Hearing loss
 - Sensorineural
- CSF leak
 - Fracture extends intracranially
Oblique fractures

- Injury pattern similar to longitudinal fractures
- From superior EAC, parallel to petrous bone
- Turns superior/oblique to cross petrotympanic fissure
 - Remains lateral to otic capsule
Otic capsule sparing fractures

- 94-98% of temporal bone fractures
- Squamosal portion of temporal bone
- Posterosuperior wall of EAC
- Through mastoid air cells and middle ear
- Fractures tegmen tympani
- Results from a blow to temporoparietal region
Otic capsule disrupting fractures

- 2.5-5.8% of temporal bone fractures
- Fracture proceeds from foramen magnum across petrous pyramid and otic capsule
- Often passes through jugular foramen, IAC, and foramen lacerum
- Do NOT typically affect ossicular chain or EAC
- Results from blow to occipital region
Why change classification scheme?

- Otic-capsule-disrupting fractures have:
 - SNHL
 - Higher incidence of CN VII palsy (30-50% v. 6-13%)
 - 2-4X higher risk of CSF leak
 - Higher risk of delayed meningitis

Dahiya: J Trauma, Volume 47(6).December 1999.1079
Penetrating trauma

- Mostly GSW
- Injuries depend on direction/velocity of missile
Complications

- Sensorineural hearing loss
- Conductive hearing loss
- Cholesteatoma
- CSF fistula
- Facial nerve injury
- Vascular injury
Sensorineural hearing loss

- **Severe-Profound SNHL**
 - Otic-capsule-disrupting fractures
- **Mixed hearing loss**
 - Incus dislocation
 - 50% of patients with incus dislocation have >10dB SNHL
- **Prognosis**
 - Profound SNHL has poor prognosis
 - Moderate SNHL may have some recovery

- **Mechanism**
 - Disruption of membranous labyrinth
 - Avulsion /trauma to cochlear nerve
 - Interruption of cochlear blood supply
 - Hemorrhage into cochlea
 - Perilymphatic fistula
 - May be suggested by fluctuating or progressive HL
Conductive hearing loss

- 80% CHL resolves spontaneously
- Hemotympanum
- Resolution of hemotympanum affected by
 - Endotracheal intubation
 - Associated facial fractures
 - Presence of CSF leak
- Ossicular discontinuity (20%)
- Common injuries
 - Incudostapedial joint (82%)
 - Dislocation of incus (57%)
 - Fracture of stapes crura (30%)
- Suggested by residual CHL following resolution of hemotympanum
 - Exploratory tympanotomy indications: 30dB CHL persisting > 2m after injury
 - Contraindications: CHL in only hearing ear
 - Relative contraindication: mixed hearing loss
Cholesteatoma

- Delayed complication
- Pathogenic mechanisms
 - Epithelial entrapment in fracture line
 - Epitympanum, antrum
 - Ingrowth of epithelium through fracture line
 - Epitympanum, antrum
 - Traumatic implantation of TM skin into ME
 - Mesotympanum
 - Trapping of epithelium medial to stenosis of EAC
 - EAC
CSF fistula

- Complicates 17% of temporal bone fractures
 - CSF otorrhea
 - With TM disruption
 - CSF rhinorrhea
 - If TM intact
- Otic capsule sparing
 - Floor of middle cranial fossa
- Otic capsule disrupting
 - From posterior cranial fossa through otic capsule
- Delayed CSF leak
 - Herniation of dura/brain into defect
 - Hematoma obstructing outflow of CSF
CSF fistula

- **Symptoms**
 - Clear watery drainage from the nose or ear
 - Flow increases when patient leans forward with neck flexed
 - Headache
- **Laboratory tests**
 - ↑ Glucose
 - ↓ Protein
 - ↓ Potassium
 - β-2 transferrin
- **Radiology**
 - HRCT
 - CT cisternography

- **Other**
 - Intrathecal fluorescein
 - Used for localizing fistulas when all other methods have failed
CSF fistula

- Meningitis
 - 2-88%
- Duration of leak
 - < 7 days 5-11%
 - > 7 days 33-88%
- Prophylactic antibiotics
 - No benefit without CSF fistula
 - Questionable benefit with CSF fistula
- Risk of meningitis increases with concurrent infection
- Pathogens
 - H. influenzae
 - S. pneumoniae
CSF fistula

- **Treatment**
 - **Conservative management 7-10 days**
 - Total bedrest
 - HOB elevated
 - Stool softeners
 - No noseblowing, sneezing, straining
 - Repeat lumbar punctures or lumbar drain

- **Operative management**
 - Approach depends on hearing status, location of fistula, and presence of brain herniation
 - Otic capsule disrupting
 - Obliteration of mastoid and middle ear
 - Otic capsule sparing
 - Lateral – complete mastoidectomy
 - Medial - combined middle cranial fossa approach
Facial Nerve Injury

- Complicates 7% of temporal bone fractures
- 25% of injuries are complete facial paralysis
- Onset
 - Immediate- 27%
 - Patients examined in ER before muscle relaxants
 - Delayed- 73%
 - Crucial to differentiate between ‘delayed onset’ and ‘delayed diagnosis’
 - Unestablished onset
 - Should be treated as immediate onset
Facial nerve injury

House-Brackmann

- I – Normal
- II – Mild dysfunction
 - Normal symmetry at rest
 - Slight weakness on close inspection
 - Slight synkinesis
- III – Moderate dysfunction
 - Normal symmetry at rest
 - Noticeable (but not severe) synkinesis
 - Obvious (but not disfiguring) weakness
 - *COMPLETE eye closure
- IV – Moderately severe dysfunction
 - Normal symmetry at rest
 - Obvious and disfiguring weakness
 - *INCOMPLETE eye closure
- V – Severe dysfunction
 - Asymmetry at rest
 - Barely perceptible motion
- VI – Total paralysis
Facial nerve injury

Prognosis

- Important factors
 - Onset
 - Degree of paresis

- Incomplete paresis rarely fails to resolve spontaneously

- Delayed onset >95% return to House-Brackmann I or II without intervention
Facial nerve injury
Sunderland classification

- **Neuropraxia**
 - 1st degree- Anatomically intact nerve with conduction blockade

- **Axonotmesis**
 - 2nd degree- Transection of axons but endoneurium intact

- **Neurotmesis**
 - 3rd degree- Transects axon and endoneurium but perineurium intact
 - 4th degree- Transect entire nerve trunk but epineural sheath intact
 - 5th degree- Complete transection of entire nerve trunk and epineurium
Facial nerve injury

- Nerve excitability test (NET)
 - Compared to healthy side
 - The lowest current eliciting a twitch is the threshold of excitement
 - Difference of 3.5 mA = severe degeneration
 - Can only be used after 3 days and before 2-3 weeks
 - Determines (in total paralysis) whether degeneration is occurring
Facial nerve injury

- Maximum stimulation test (MST)
 - Increasing current is delivered until maximal movement is seen
 - Compared to healthy side
 - Subjectively expressed as percentage of healthy side
Facial nerve injury

- Electroneurography (ENOG)
 - Bipolar stimulating electrode at stylomastiod foramen
 - Responses to maximal electrical stimulation of 2 sides compared
 - Recorded electrically (not subjective)
 - Normal < 3% difference between sides
Facial nerve injury

- **Surgical decompression**
 - > 90% degeneration within 6 days
 - > 95% degeneration within 14 days

- **Site of injury**
 - Perigeniculate ganglion in 80-93%

- **Surgical approach**
 - Decompression, nerve rerouting with direct anastomosis, cable grafting
 - Translabyrinthine approach
 - Combined transmastoid/middle cranial fossa
Vascular injury

- **Carotid injury**
 - 5% chance of carotid injury if canal intact
 - 18% chance of carotid injury if canal disrupted

- **Carotid ligation or embolism**
 - Indicated if hemorrhage from EAC cannot be controlled by packing
 - Packing ONLY indicated with significant hemorrhage!

- **Arteriography**
 - Indicated if neurologic deficits