Pathology of the Nervous System
Pathology of the Nervous System

- Introduction
- Increased intracranial pressure
- Vascular and circulatory disorders
- Trauma
- Infections
- Tumors
- Demyelinating diseases
- Degenerative diseases
- Developmental Abnormalities
Hematoxylin and Eosin

Luxol fast-blue-PAS

Bielschowsky
Cell types

1. **Neuron**: functions in neural transmission, most vulnerable cell, limited regeneration
2. **Astrocyte**: major reactive cell of CNS forms ‘scar’
3. **Oligodendrocyte**: highly vulnerable, limited proliferation, forms myelin sheath
4. **Ependymal cell**: vulnerable, limited regeneration, lines ventricles (ependymal granulations)
5. **Microglial cell**: monocyte/macrophage (bone marrow) derived phagocytic cell, antigen presentation, producer of cytokines, inflammatory cell
Introduction

- Cellular reactions of the central nervous system
 - Neurons: permanent
 - Axonal retraction (axonal spheroids)
 - Ischemic cell changes
 - Atrophy and degeneration
 - Intraneuronal deposits and inclusions
 (neurodegenerative diseases)
 - Glia: proliferate, form glial ‘scar’
Gray Matter
Nissl substance
Ventricular lining
Mechanisms of dysfunction causing disease

- Pathophysiological (toxic/metabolic)
- Structural
 - Focal lesions correlate with localizing symptoms
 - System degenerations correlate with functionally localizing symptoms (ie motor neuron disease)
- Increased intracranial pressure (generalized or focal), can cause global symptoms or brain herniation since the volume of the brain is fixed by the skull
Increased intracranial pressure

Headache
Vomiting
Decreased Level of Consciousness
Papilledema
Herniation
Causes of Cerebral Edema

- **Generalized**
 - (frequently cytotoxic)
 - Hypoxia
 - Toxins
 - Encephalitis
 - Trauma

- **Focal (often vasogenic)**
 - Infarction
 - Injury/contusion
 - Mass—neoplastic, infectious (cerebral abscess), hematoma
TYPES OF HERNIATION

1. Subfalcine (cingulate)
2. Transtentorial (uncal)
3. Tonsillar (foramen magnum)
4. Extracranial
TRANSTENTORIAL (UNCAL) HERNIATION

SHIFT OF THE BRAIN FROM THE MIDDLE TO THE POSTERIOR FOSSA THROUGH THE TENTORIAL INCISURA

MAY BE UNILATERAL OR “CENTRAL”

SECONDARY EFFECTS INCLUDE:

- Compression of the third cranial nerve(s)
- Duret hemorrhages in midline rostral brainstem
- Compression of the contralateral cerebral peduncle (Kernohan’s notch)
- Compression of the posterior cerebral artery with infarction of the medial occipital lobe
UNCAL HERNIATION

Normal uncus

Herniated right uncus
DURET HEMORRHAGES

Midline Duret hemorrhages plus Kernohan’s notch in the right cerebral peduncle
HYDROCEPHALUS

DILATATION OF THE VENTRICULAR SYSTEM

NONCOMMUNICATING: Due to obstruction within the ventricular system, e.g., tumor, aqueductal stenosis

COMMUNICATING: Due to obstruction of CSF flow in the subarachnoid space with decreased reabsorption
CSF FLOW
COMMUNICATING HYDROCEPHALUS

Dilatation of the entire ventricular system including the aqueduct and fourth ventricular foramina. There is thickening and scarring of the meninges, secondary to previous subarachnoid hemorrhage.
Summary: Microscopic and gross brain abnormalities

- Cell types: Function and proliferative capacity
- Mechanisms of CNS dysfunction:
 - Pathophysiological “invisible” lesions: metabolic, toxic
 - Structural “visible” abnormalities: mass, edema, hydrocephalus, cytologic abnormalities.
- Increased intracranial pressure
 - Causes of cerebral edema: focal and generalized
 - Types of herniation: cingulate, uncal, tonsillar
 - Hydrocephalus: non-communicating and communicating
Vascular and Circulatory Disorders

Ischemia/Infarction

Transient Ischemic Attacks

Hemorrhage
Stroke: Ischemia/Infarct

- Atherosclerosis: Narrowing
- Thrombosis: Damages vessel, infarcts are non-hemorrhagic
- Embolism: Heart valves, plaques (frequently hemorrhagic)
- Vasospasm: Rare, but common after subarachnoid hemorrhage
- Hypertensive vasculopathy: Lacunar infarcts
RISK FACTORS
atherosclerosis
RISK FACTOR: atherosclerosis
EMBOLIC INFARCTS
TYPICALLY ARE HEMORRHAGIC
RISK FACTORS: hypertension (lacunar infarcts)

Lacunar infarct of the pons

Lacunar infarct of the globus pallidus
Other causes of ischemia

- Systemic Hypotension: Results in watershed infarcts
- Hypoxia or Anoxia: Lack of oxygen or poor perfusion after MI results in watershed infarcts and/or damage in vulnerable regions, i.e., hippocampus and cerebellum
- Venous thrombosis: Rare, causes hemorrhagic infarcts, consider coagulopathy
ANASTOMOSES BETWEEN TERMINAL BRANCHES OF MAJOR CEREBRAL ARTERIES
VASCULAR WATERSHEDS
VENOUS CIRCULATION
VENOUS INFARCTION

- Venous infarction usually results from venous sinus thrombosis
- Risk factors include a number of states that result in hyperviscosity or increased coagulability
- Grossly they are very hemorrhagic
Transient Ischemic Attacks

- Lasts less than 24 hours by definition
- Attributed to transient embolization
- Occurs in patients with atherosclerotic stenosis
- Harbinger of cerebral infarction
Summary: Strokes due to ischemia/infarction

- Large vessel atherosclerotic disease (non-hemorrhagic)
- Embolic (hemorrhagic)
- Hypertensive (hemorrhages and lacunes)
- Vasospasm (2° to subarachnoid hemorrhage)
- Watershed infarcts: hypotension and hypoxia
- Venous thrombosis (rare, hemorrhagic)
- TIA: clears in 24 hours - by definition, often associated with large vessel disease
Strokes Due to Hemorrhage

Hypertension

Aneurysms

Vascular Malformations

Bleeding Diathesis

Trauma
HYPERTENSIVE HEMORRHAGE
lenticulostriate arteries
SACCULAR ANEURYSMS

Approximately 90% of aneurysms occur in the MCA.
SUBARACHNOID HEMORRHAGE
rupture of saccular (berry) aneurysm
MYCOTIC ANEURYSM

(bacterial)
VASCULAR MALFORMATION AS A SOURCE OF HEMORRHAGE
arteriovenous malformation (AVM)
BLOOD DYSCRASIAS AS A CAUSE OF HEMORRHAGE
thrombocytopenia
Summary: Strokes due to hemorrhage

- **Hypertension:** Most common cause of brain hemorrhage, sites include basal ganglia, pons, cerebellum and cerebral white matter

- **Aneurysms:**
 - **Berry aneurysm:** Most common type, causes SAH
 - **Mycotic aneurysm:** Rare, parenchymal bleed, bacterial
 - **Atherosclerotic:** Rarely bleed, may cause mass effect, fusiform

- **Vascular malformations and clotting abnormalities**
Closed Head Injury

Concussion

- Immediate and temporary disturbance of brain function.

- Cause
 - Shearing of axons

- Signs: Amnesia, confusion, headache, visual disturbances, nausea, vomiting, dizziness
Closed Head Injury

- **Epidural hematoma:** Middle meningeal artery tear (temporal bone fracture), accumulates rapidly (arterial)

- **Subdural hematoma:** Shearing of bridging veins, accumulate in hours to days (rarely weeks+)

- **Subarachnoid hemorrhage:** Occurs with contusions or intraparenchymal hemorrhage (also with berry aneurysms)
TRAUMA AS A CAUSE OF HEMORRHAGE

subdural hematoma
Closed Head Injury

- **Contusions**: Brain against bone, coup (at site of impact)/contrecoup (side opposite impact)
- **Intracerebral hemorrhage**: Shearing of brain vessels, high impact
- **Diffuse Axonal Injury**: Shearing of axons results in post-traumatic neurologic deficits
- **Cerebral Edema**: Occurs with and without an obvious structural lesion
 - Note: Can occur without evidence of hemorrhage
TRAUMA AS A CAUSE OF HEMORRHAGE: contusions
Other traumatic injuries

- Penetrating injuries: Bullets, bone fragments, result in laceration with the potential for infection

- Spinal cord injury: Fractures, vertebral dislocation, penetrating injury, the spinal cord may be crushed or the site of hemorrhage
Summary: Trauma

- Closed head injuries:
 - Sites (epidural, subdural, subarachnoid, parenchymal) and typical etiology
 - Contusion, hemorrhage, diffuse axonal injury, edema

- Penetrating injuries:
 - Causes and risks (infection)
 - Spinal cord injuries
Infections

- **Meningitis**
 - Bacterial
 - Tuberculous
 - Fungal
 - Viral

- **Cerebral abscess**
- **Subdural empyema**
- **Cerebritis**
- **Viral encephalitis**
Infections: Route of entry

- Hematogenous (most common)
 - Localized source: abscess, heart valve, lung infection
 - Other: mosquitoes, needles
- Direct implantation (trauma)
- Local extension (ear infection → abscess)
- Axonal transport (rabies, HSV)
Meningitis

- Inflammation of the meninges
 - Fever
 - Headache
 - Stiff neck
 - Decreased level of consciousness

- Bacterial (purulent)
- Tuberculous (granulomatous)
- Fungal (granulomatous)
Bacterial Meningitis

- **Neonates:** E. Coli, group B streptococci
- **Infants and children:** Hemophilus influenza (before immunization)
- **Young adults:** Neisseria meningitidis
- **Adults:** Streptococcus pneumoniae and Listeria monocytogenes
Meningitis: CSF findings

- Increased white blood cells
 - Neutrophils with **bacterial** meningitis
 - Mononuclear cells (lymphocytes and macrophages) with **TB** and **fungal** infections
 - Lymphocytes with **viral** infection
- Increased protein (mild with viral)
- Reduced glucose with **bacterial** meningitis
PURULENT (BACTERIAL) MENINGITIS
PURULENT MENINGITIS
GRANULOMATOUS MENINGITIS: tuberculosis
GRANULOMATOUS MENINGITIS

tuberculosis

H&E

Acid Fast
GRANULOMATOUS MENINGITIS

tuberculosis

Sequelae:

Vasculitis

Small infarcts

Cranial neuropathies
ASEPTIC (VIRAL) MENINGITIS
Cerebral Abscess

- Localized (contained) infection
- Hematogenous spread (heart valves), penetrating wound, paranasal sinuses, middle ear
- Oral flora may be the source of an abscess after dental manipulation
- Organisms are mixed and frequently anaerobic
- Surrounding cerebral edema is common
- CSF is frequently sterile
PURULENT CEREBRAL ABSCESS
Cerebritis in Immune-compromised Patients

Fungal Infections
- Aspergillus
- Candida
- Mucor

Protozoal
- Toxoplasma
- Ameba infections can be seen in immunocompromised patients and rarely non-immunocompromised individuals
Viral infection

- **Route of entry**
 - May be blood borne, respiratory or fecal/oral
 - Rabies-peripheral nerve

- **Acute viral encephalitis**
 - Herpes-activation of latent infection
 - Arbovirus-mosquito borne (West Nile virus)
 - Polio-enteric virus with neuronal tropism
 - Immunocompromised hosts
 - CMV
 - HSV/VZV
 - PML
 - HIV encephalitis (HIVE)
ACUTE (VIRAL) ENCEPHALITIS
microscopic features

Lymphocytic infiltrates

Microglial proliferation
with microglial nodules
ACUTE (VIRAL) ENCEPHALITIS
Herpes simplex
OPPORTUNISTIC VIRAL INFECTIONS:
Progressive multifocal leukoencephalopathy
(JC virus)
Progressive multifocal leukoencephalopathy
OPPORTUNISTIC INFECTIONS:
Toxoplasmosis
OPPORTUNISTIC INFECTIONS: Toxoplasmosis

Bradyzoites with cysts
OPPORTUNISTIC INFECTIONS

Toxoplasmosis

Necrotizing lesion
H&E

Immunoperoxidase for
Toxo. tachyzoites
OPPORTUNISTIC INFECTIONS

Fungal cerebritis: Aspergillus
OPPORTUNISTIC INFECTIONS

Fungal cerebritis: Aspergillus
Summary: Infections

- Meningitis: Definition, CSF findings
- Abscess: Definition, etiology
- Viral meningitis: Routes of entry (arbo-mosquitos)
- Viral encephalitis: Rabies, HSV, arboviruses
 - Spinal cord: Polio
- Infections in immunocompromised hosts
 - Cerebritis: Fungal (aspergillus, protozoal-toxoplasma)
 - Viral: CMV, VZV, PML, Aids encephalopathy
Primary Tumors of the Central Nervous System

- **Glioma**
 - Astrocytoma
 - Oligodendroglioma
 - Ependymoma

- **Neuronal lineage**

- Meningioma

- Nerve Sheath Tumors
Primary brain tumors: Cell types

1. **Neuron**: Gangliocytoma, ganglioglioma medulloblastoma
2. **Astrocyte**: Astrocytoma, glioblastoma
3. **Oligodendrocyte**: Oligodendroglioma
4. **Ependymal cell**: Ependymoma
5. **Microglial cell**: Tumors derived from microglial cells have not been described.
6. **Meningeal cell**: Meningiomas are derived from arachnoidal cells and are usually dural-based.
GLIOMAS

- ASTROCYTOMAS
- OLIGODENDROGLIOMAS
- EPENDYMOMAS
- MIXED GLIOMAS
Gliomas

- Diffusely infiltrating (not easily resected)
- Histologic appearance (grade) correlates with overall survival
- May become more malignant (higher grade) over time (especially astrocytomas which become glioblastomas)
- May spread via CSF
- Rarely (never) metastasize
JUVENILE PILOCYTIC ASTROCYTOMA
JUVENILE PILOCYTIC ASTROCYTOMA

Rosenthal fibers

Eosinophilic granular bodies
ASTROCYTOMA
ASTROCYTOMA
FEATURES OF ANAPLASIA

vascular proliferation
GLIOBLASTOMA
MULTIFORME
GLIOBLASTOMA
MULTIFORME
EPENDYOMA
Non-glial tumors

- Medulloblastoma: Malignant cerebellar tumor of childhood
- Meningioma: Benign, superficial, well-circumscribed tumor derived from arachnoidal cells
- Nerve sheath tumors: Schwannoma and neurofibroma, well-circumscribed, encapsulated tumors involving cranial nerves, spinal nerves and other peripheral nerves
MEDULLOBLASTOMA
MEDULLOBLASTOMA
MENINGIOMA
NEUROFIBROMA
Secondary Involvement of the Central Nervous System

- Metastatic tumor
 - Melanoma
 - Renal cell
 - Lung

- Contiguous involvement (pituitary adenoma and craniopharyngioma)
METASTATIC TUMORS
leptomeningeal carcinomatosis
METASTATIC MELANOMA
PRIMARY CNS LYMPHOMA
Summary: Brain tumors

- Primary brain tumors: glia (low grade vs. high grade), neurons, meninges
- Nerve sheath tumors: schwannoma and neurofibroma
- Secondary brain tumors: Metastatic (lung-males, breast-females, melanoma, renal cell carcinoma)
- Tumors arising outside the CNS with CNS symptoms: pituitary adenoma, craniopharyngioma
DISEASES OF MYELIN
AND PERIPHERAL NERVE
MYELIN

PNS MYELIN

CNS MYELIN
CNS MYELIN oligodendrocytes
DISEASES OF MYELIN

- **DEMYELINATING DISEASES:**
 - Acquired disorders of myelin, such as multiple sclerosis.

- **DYSMYELINATING DISEASES:**
 - Genetic disorders of myelin and its turnover, such as leukodystrophies.
Multiple sclerosis is the most common disease of CNS myelin; prevalence of 1:1000.

- Central nervous system myelin is selectively destroyed (axons are relatively preserved)
- Onset is frequently in 30 and 40 year old age groups.
- The disease is typically progressive with relapsing and remitting accumulations of focal neurologic deficits.
- The etiology is thought to be autoimmune in nature
MULTIPLE SCLEROSIS
PLAQUES
MULTIPLE SCLEROSIS
PLAQUE
MULTIPLE SCLEROSIS
PLAQUES
optic chiasm
MULTIPLE SCLEROSIS
PLAQUES
PONTINE MS PLAQUE

adjacent sections for myelin and axons

- Luxol fast-blue-PAS
- Bielschowsky
MULTIPLE SCLEROSIS PLAQUE
sharp circumscription
ACUTE DISSEMINATED ENCEPHALOMYELITIS

- Post- or parainfectious encephalomyelitis:
 - following a viral infection
- Postvaccinial encephalomyelitis:
 - Pasteur rabies and smallpox vaccination
 - Akin to EAE (experimental allergic enceph.)
- ADE is an acute, monophasic illness
- Pathology:
 - Perivenous lymphocytic infiltrates with demyelination
- Autoimmune mechanism
ACUTE DISSEMINATED ENCEPHALOMYELITIS (ADEM)
ACUTE DISSEMINATED ENCEPHALOMYELITIS (ADEM)
Myasthenia Gravis

- An autoimmune neuromuscular disease that results from autoantibodies at the neuromuscular junction.
 - Characterized by variable weakness of voluntary muscles (eye muscles may be weak)
 - Worsens with activity (and late in the day)
- May be associated with other autoimmune disorders such as thyroid disease, rheumatoid arthritis and SLE
- Often associated with a thymoma, removal of the thymoma may be curative.
LEUKODYSTROPHIES

- **CLINICAL:** A variety of inherited diseases with variable age of onset (usually in childhood) and rate of progression, which typically result in diffuse severe dysfunction.

- **PATHOGENESIS:** Recessive mutations in proteins related to myelin structure or metabolism.

- The peripheral nervous system also may be involved in a number of forms.
PATHOLOGY OF LEUKODYSTROPHIES

- Demyelination in large confluent foci within the cerebral hemispheres and other sites

- GENERAL:
 1. Loss of myelin and oligodendroglia
 2. Relative preservation of axons

- DISEASE SPECIFIC:
 1. Globoid cells (Krabbe’s disease)
 2. Metachromatic material in macrophages and neurons (metachromatic leukodystrophy, aryl sulfatase deficient)
 3. Adrenal atrophy and cytosomal inclusions (ALD, peroxisomal abnormality)
METACHROMATIC LEUKODYSTROPHY
METACHROMATIC LEUKODYSTROPHY

sparing of subcortical arcuate fibers
METACHROMATIC LEUKODYSTROPHY
(aryl sulfatase deficiency)

Acidified cresyl violet
metachromasia

LFB-PAS
ADRENOLEUKODYSTROPHY
ADRENOLEUKODYSTROPHY
lymphocytic infiltrates
KRABBE’S DISEASE (GLOBOID CELL LEUKODYSTROPHY)
cerebroside-β-galactosidase deficiency
DISEASES OF PERIPHERAL NERVE

CLASSIFICATION BY PATHOLOGY

Demyelinating neuropathies

- Guillain-Barre-Landry syndrome
- Chronic inflammatory demyelinating polyneuropathy (CIDP)

Axonal neuropathies: most neuropathies are axonal but pathology often is nonspecific

- Examples include hypertrophic neuropathies, herpes zoster, HIV, alcoholic and diabetic neuropathies
DEMYELINATING NEUROPATHY
GUILLAIN-BARRE-LANDRY

LFB-PAS Silver stain
DEMYELINATING NEUROPATHY
GUILLAIN-BARRE-LANDRY
inflammatory demyelination
DEMYELINATING NEUROPATHY
GUILLAIN-BARRE-LANDRY
evidence of remyelination
Summary:
Demyelinating/Dysmyelinating diseases

- **Demyelinating disease**: most common is MS, acute disseminated encephalomyelitis (rare, follows viral infection, vaccination)

- **Leukodystrophies**: Genetic diseases (many enzyme abnormalities are defined) resulting in myelin loss, occur early in life.

- **Peripheral nerve demyelination**: Guillain-Barre Syndrome, autoimmune, potential for remyelination with complete recovery
Neurodegenerative diseases

Dementia:
Alzheimer’s disease, Pick’s disease

Movement Disorders:
Parkinson’s disease, Huntington’s disease, Multiple Systems Atrophy

Motor Disease:
ALS, Werdnig-Hoffman, Poliomyelitis

Prion disease
Alzheimer’s disease: Clinical features

- Clinical features of dementia
 - Impairment of recent memory
 - Aphasia (naming), apraxia (motor), agnosia (object), executive functioning
 - Impaired level of function
 - Progressive over time
 - 47% of people over 85 years of age are affected
Alzheimer’s disease: Pathogenesis

- The amyloid hypothesis:
 Abnormal APP processing leads to deposits of insoluble B-pleated amyloid protein
Alzheimer’s disease: Gross and microscopic features

- **Gross brain atrophy:** neuronal loss
- **Neuritic (senile) plaques containing B-amyloid**
- **Neurofibrillary tangles composed of phosphorylated microtubule associated tau protein**
- **Cerebral amyloidosis**
Other Dementias

- Dementia with Lewy bodies
 - Second most common neurodegenerative cause of dementia
 - Lewy bodies and neurodegeneration affect brainstem and cortex

- Pick’s disease and other frontal temporal dementias
 - Classification depends on histologic examination and is complicated
Parkinson’s disease: Clinical findings

- Idiopathic Parkinson’s disease (vs. parkinsonism or parkinsonian syndrome), est 1% of population over 50 years of age
 - Tremor (rest)
 - Rigidity (cogwheel rigidity)
 - Bradykinesia (mask-like facies, loss of arm-swing)
 - Festinating gait (loss of righting reflexes)
Parkinson’s disease: Gross and microscopic findings

- **Gross** -- loss of pigment in the substantia nigra

- **Microscopic** -- Lewy bodies with pigmented neuronal cell loss and gliosis
 - cortical Lewy bodies present in 80% or more of PD cases
Parkinson’s Disease
Other Extrapyramidal Movement Disorders

- Parkinson’s disease: Hypokinetic
- Huntington’s disease: Hyperkinetic
 - Choreiform movements
 - Intellectual decline
- Multiple Systems Atrophy
 - Parkinsonian features
 - Symptoms suggestive of olivopontocerebellar degeneration
 - Shy-Drager syndrome (parasympathetic dysfunction)
Motor neuron disease

- Amyotrophic lateral sclerosis (Lou Gehrig’s disease)
 - Results in progressive weakness, eventually resulting in paralysis of respiratory muscles and death often within 2-5 years of diagnosis
 - Degeneration of upper (motor cortex) and lower (spinal cord) motor neurons
Motor Neuron Disease

- **ALS**: Adult form of motor neuron disease associated with both upper (brain) and lower (spinal cord) motor involvement.

- **Werdnig-Hoffman disease**: The baby is weak (floppy) at birth. Lower (spinal cord) motor neurons are involved.

- **Poliomyelitis**: Lower motor neurons are destroyed.
Prion disease (Spongiform encephalopathy): Clinical findings

- 50-70 years old, rapidly evolving dementia, often with myoclonus and a characteristic EEG pattern (of repetitive sharp waves)
- Early symptoms include personality changes, impaired judgement, gait abnormalities, vertigo,
- In some patients cerebellar and visual abnormalities predominate
- Majority die w/in 6 months, frequently w/in 3 mo.
Prion disease: Pathogenesis

- Transmissible but not “infectious”
- **Prion protein**, Prusiner--1997 Nobel Prize, (not a “slow virus”)
- PrP^C -- produced normally in most cells -- amino acid sequence is identical to the PrP^{Sc} -- abnormal protein, the difference is in the secondary conformation (B-pleated vs alpha helical) PrP^{Sc} causes post-translational modification of PrP^C
- Transmitted by direct inoculation (corneal transplants, dural grafts, pituitary products)
Prion disease: Gross and microscopic findings

- Gross appearance--may be normal due to short duration of disease

- Microscopic appearance--vacuolation of neuropil, vacuoles are within nerve cell bodies and neuronal processes

 - cell loss and gliosis may be prominent
Prion Disease
Summary: Neurodegenerative diseases

- **Dementia**
 - Alzheimer’s disease: common, amyloid hypothesis, plaques and tangles, gross brain atrophy
 - Prion disease: rare, “transmissible” protein, rapidly progressive, vacuolar changes

- **Movement disorders**
 - Parkinson’s disease: hypokinetic, loss of dopaminergic cells substantia nigra, Lewy bodies
 - Huntington’s disease: choreiform movements, caudate atrophy, nuclear inclusions

- **Motor neuron disease (ALS):** Loss of upper and lower motor neurons, progressive over 2-5 years
Pediatric Neuropathology

Developmental Abnormalities
Neuronal Storage Diseases
Familial Tumor Syndromes
Perinatal Lesions/Infections
Trauma: shaken baby syndrome
Developmental Abnormalities: Pathology

- **Organ induction** (2.5-6 weeks): neural tube defects: anencephaly, spinal dysraphism, encephalocele, holoprosencephaly

- **Neuronal (glial) migration** (3-6 months): lissencephaly, microcephaly, polymicrogyria, agenesis of the corpus callosum

- **Myelination** (2 months-juvenile)

- **Synaptogenesis** (20 week gestation-adulthood): trisomy 21, fragile X, cretinism

In general, earlier insults cause more severe structural damage
Organ Induction: Dysraphic Disorders

- Failure of neural tube folds to close during development
 - Prenatal testing may reveal an elevated maternal serum AFP
 - Folate deficiency: Folic acid supplementation prior to conception may reduce the incidence of neural tube defects up to 70%
 - Neural tube defects range from small bony defects in the lumbosacral region (spina bifida occulta) to craniorachischisis.
 - Myelomeningocele occurs most commonly in the lumbosacral region
Neuronal migration disorders

- Lissencephaly (smooth brain)/pachygyria (few enlarged gyri)
- Polymicrogyria (many small gyri)
- Heterotopias (circumscribed collections) and dysplasias (disorganized lamination)
 - Occur with other developmental abnormalities for example in patients with chromosomal abnormalities
 - May be the focus of seizure activity
Seizures

- Result from abnormal electrical activity of a group of brain cells and cause an altered mental state or tonic clonic movements. May be partial (focal) or generalized.

- In children seizures may result from neuronal migration abnormalities or from abnormalities acquired subsequent to brain damage (such as inflammation)

- A first time seizure in an adult would warrant an imaging study to rule out tumor or other structural abnormality
Neuronal Storage Disease

- Result from inborn errors of metabolism (deficient enzyme or abnormal lysosomal function)
- Progressive, poor treatment options (bone marrow transplant)
- Accumulation of metabolic products in the neuron
 - Tay Sachs disease
 - Neuronal ceroid lipofuscinosis
 - Glycogen storage disease
Concentric Multilamellar membranous cytoplasmic bodies (MCB’s)
Familial Tumor Syndromes

- **Neurofibromatosis**
 - NF-1: (most common) multiple peripheral neurofibromas
 - NF-2: bilateral acoustic schwannomas and meningiomas

- **Tuberous Sclerosis**: subcortical and cortical hamartomas (tubers)

- Autosomal dominant
- Tumor suppressor gene mutations
- Cutaneous findings
Perinatal Lesions of
the CNS

Hemorrhage
Hypoxic/Ischemic
Infectious
Congenital/Perinatal Infections

TORCH

- Toxoplasmosis
- Other: syphilis, TB, listeria monocytogenes; other viruses (VZV, HepB)
- Rubella (rare—immunizations)
- Cytomegalovirus, Chlamydia trachomatis
- Herpes simplex (usually type 2); HIV
Shaken Baby Syndrome

- **General:** Violent shaking causes acceleration (shearing) injury of axons: **diffuse axonal injury**
- **Neurologic:** Blindness/mental retardation in infants less than 1 year of age. Present with apnea, seizures, lethargy, bradycardia, respiratory difficulty, coma.
- **Pathology:** Oculo-cerebral damage can occur without external evidence of head injury. Retinal and optic nerve sheath hemorrhage—ophthalmoscopic exam important
- **Microscopic:** Axonal spheroids
Summary: Pediatric neuropathology

- Developmental abnormalities: Neural tube defects (anencephaly, spina bifida), migrational defects (mental retardation, seizures)
- Inborn errors of metabolism: Neuronal storage diseases and leukodystrophies
- Other: Familial tumor syndromes, hemorrhage, hypoxic/ischemic injury, shaken baby syndrome
Pathology of the Nervous System

- Introduction
- Increased intracranial pressure
- Vascular and circulatory disorders
- Trauma
- Infections
- Tumors
- Demyelinating diseases
- Degenerative diseases
- Developmental Abnormalities
"Excuse me … I know the game’s almost over, but just for the record, I don’t think my buzzer was working properly."