Biomechanics of Skeletal Muscle

www.fisiokinesiterapia.biz

Contents

- I. Composition & structure of skeletal muscle
- II. Mechanics of Muscle Contraction
- III. Force production in muscle
- IV. Muscle remodeling
- V. Summary

Muscle types:

- cardiac muscle: composes the heart
- smooth muscle: lines hollow internal organs
- skeletal (striated or voluntary) muscle: attached to skeleton via tendon & movement
- Skeletal muscle 40-45% of body weight
 - > 430 muscles
 - ~ 80 pairs produce vigorous movement
- Dynamic & static work
 - Dynamic: locomotion & positioning of segments
 - Static: maintains body posture

I. Composition & structure of skeletal muscle

Structure & organization

- Muscle fiber: long cylindrical multi-nuclei cell 10-100 μ m ϕ fiber \rightarrow endomysium \rightarrow fascicles \rightarrow perimysium \rightarrow epimysium (fascia)
- Collagen fibers in perimysium & epimysium are continuous with those in tendons
- {thin filament (actin 5nm φ) + thick filament (myosin 15 nm φ)}
- \rightarrow myofibrils (contractile elements, 1 μ m ϕ) \rightarrow muscle fiber

Bands of myofibrils

H I band

A bands: thick filaments in central of sarcomere

Z line: short elements that links thin filaments

I bands: thin filaments not overlap with thick filaments

H zone: gap between ends of thin filaments in center of A band

M line: transverse & longitudinally oriented linking proteins for adjacent thick filaments

Sarcoplasmic reticulum

- network of tubules & sacs;
- parallel to myofibrils
- enlarged & fused at junction between A & I bands: transverse sacs (terminal cisternae)
- Triad {terminal cisternae, transverse tubule}
- T system: duct for fluids & propogation of electrical stimulus for contraction (action potential)
- Sarcoplasmic reticulum store calcium

Molecular composition of myofibril • Myosin composed of

Myosin composed of individual molecules each has a globular head and tail

Cross-bridge: actin & myosin overlap (A band)

Actin has double helix; two strands of beads spiraling around each other

troponin & tropomysin regulate making and breaking contact between actin & myosin

Molecular basis of muscle contraction

- Sliding filament theory: relative movement of actin & myosin filaments yields active sarcomere shortening
- Myosin heads or cross-bridges generate contraction force
- Sliding of actin filaments toward center of sarcomere: decrease in I band and decrease in H zone as Z lines move closer

Motor unit

Histology of muscle

Type IIA

Type IIB

Type I

Eye muscle (Rectus lateralis); Myofibrillar ATPase stain, PH 4.3

Muscle Differentiation (types of fibers)

	I (slow-twitch oxidative)	IIA (fast-twitch oxidative glycolytic)	IIB fast-twitch glycolytic
Contraction speed	Slow	fast	fast
Myosin-ATPase activity	Low	High	High
Primary source of ATP production	Oxidative phosphorylation	Oxidative phosphorylation	Anaerobic glycolysis
Glycolytic enzyme activity	Low	Intermediate	High
No. of mitochondria	Many	Many	Few
Capillaries	Many	Many	Few
Myoglobin contents	High	High	Low
Muscle Color	Red	Red	White
Glycogen content	Low	Intermediate	High
Fiber diameter	small	Intermediate	Large
Rate of fatigue	slow	Intermediate	Fast

Functional arrangement of muscle

 α pinnated angle of muscle

The Musculotendinous Unit

- Tendon- spring-like elastic component in series with contractile component (proteins)
- Parallel elastic component (epimysium, perimysium, endomysium, sarcolemma)

PEC: parallel elastic component

CC: contractile component

SEC: series elastic component

11. Mechanics of Muscle Contraction

- Neural stimulation impulse
- Mechanical response of a motor unit twitch

$$F(t) = F_0 \frac{t}{T} e^{-\frac{t}{T}}$$

T: twitch or contraction time, time for tension to reach maximum

F₀: constant of a given motor unit

Averaged T values Tricep brachii 44.5 ms Soleus 74.0 ms Biceps brachii 52.0 ms Tibialis anterior 58.0 ms

Medial Gastrocnemius 79.0 ms

Summation and tetanic contraction

Generation of muscle tetanus

Note: muscle is controlled by frequency modulation from neural input very important in functional electrical stimulation

Wave summation & tetanization

Critical frequency

Motor unit recruitment

All-or-nothing event

2 ways to increase tension:

- Stimulation rate
- Recruitment of more motor unit

Size principle
Smallest m.u. recruited first
Largest m.u. last

III. Force production in muscle

- Force —length characteristics
- Force velocity characteristics
- Muscle Modeling
- Neuromuscular system dynamics

3-1 Force-length curve of contractile component

- Resting 2.0-2.25 um max. no. of cross bridges; max. tension
- 2.25-3.6 um no. of cross bridge ↓
- < 1.65 um overlap of actin no. of cross bridge ↓

Influence of parallel elastic component

Overall force-length characteristics of a muscle

Series Elastic Component

- Tendon & other series tissue
- Lengthen slightly in isometric contraction
- Series component can store energy when stretched prior to an explosive shortening

Quick-release for determining elastic constant of series

- Muscle is stimulated to build tension
- Release mechanism is activated
- Measure instantaneous shortening x while force is kept constant
- Contractile element length kept constant during quick release

$$K_{SC} = \frac{F}{x}$$

In vivo force-length measurement

- Human in vivo experiments (MVC)
- Challenges:
 - Impossible to generate a max. voluntary contraction for a single agonist without activating remaining agonist
 - Only moment & angle are measurable.
 Moment depends on muscle force and moment arm.

3-2 Force-Velocity Characteristics

Concentric contraction

- Muscle contracts and shortening, positive work was done on external load by muscle
- Tension in a muscle decreases as it shortens

Eccentric contraction

- Muscle contracts and lengthening, external load does work on muscle or negative work done by muscle.
- Tension in a muscle increases as it lengthens by external load

Force-velocity characteristics of skeletal muscle (Hill model)

eccentric concentric

$$F = \frac{(F_0 + a)b}{v + b} - a$$

 $F_0 = \text{max.isometric tension}$

a = coefficient of shortening heat

 $v_0 = max$. velocity when F = 0

$$b = \frac{a v_0}{F_0}$$

Increased tensions in eccentric due to:

- Cross bridge breaking force > holding force at isometric length
- High tendon force to overcome internal damping friction

Length and velocity versus Force

Note: maximum contraction condition; normal contractions are fraction of the maximum force

Equilibrium of load and muscle force

- Muscle force is function of length, velocity and activation
- The load determines activation and length of muscle by the equilibrium condition
- Load: spring-like, inertial, viscous damper

3-3 Muscle Modeling

Elements of Hill model other than contractile element

- Derive equations of motion
- Estimated parameters based on Experimental data & model
 Simulation (least squares)
 Numerical simulation

3-4 Neuromuscular system dynamics

Muscle force

Neuromuscular system modeling

Muscle fatigue

Drop in tension followed prolonged stimulation.

Fatigue occurs when the stimulation frequency outstrips rate of replacement of ATP, the twitch force decreases with time

V. Muscle Remodeling

- Effects of Disuse and Immobilization
 - Immediate or early motion may prevent muscle atrophy after injury or surgery
 - Muscle fibers regenerate in more parallel orientation, capillariaztion occurred rapidly, tensile strength returned more quickly
 - Atrophy of quadriceps developed due to immobilization can not be reversed by isometric exercises.
 - Type I fibers atrophy with immobilization; crosssectional area decreases & oxidative enzyme activity reduced
 - Tension in muscle afferent impulses from intrafusal muscle spindle increases & leading to increase stimulation of type I fiber

Effects of Physical Training

- Increase cross-sectional area of muscle fibers,
 muscle bulk & strength
- Relative percentage of fiber types also changes
- In endurance athletes % type I, IIA increase
- Stretch out of muscle-tendon complex increases elasticity & length of musculo-tendon unit; store more energy in viscoelastic & contractile components
- Roles of muscle spindle & Golgi tendon organs: inhibition of spindle effect & enhance Golgi effect to relax muscle and promote further lengthening.

V. Summary

- Structure unit of muscle: fiber
- Myofibrils are composed of actin & myosin
- Sliding filament theory & cross-bridge
- Calcium ion & contractivity
- Motor unit: a single neuron & all muscle fibers innervated by it
- Force production depends on length, velocity, muscle composition & morphology (Hill model)

References

- D.A. Winter, Biomechanics and Motor Control of Human Movement, 2nd ed. John Wiley & Sons, NY, 1990.
- M. Nordin & V.H. Frankel, Basic
 Biomechanics of the Musculoskeletal System,
 2ne ed., Lea & Febiger, London, 1989.
- Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed., Speinger-Verlag, NY, 1993.